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• Illustration of novel quantum effect logic in quantum cognition.
• Explanation of strengths of effect logic w.r.t. traditional projection-based logic.
• Demonstration of the (Python / EfProb) tool support of the effect logic.
• Re-description of standard quantum cognition examples with effect logic.
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a b s t r a c t

This paper illustrates applications of a new, modern version of quantum logic in quantum cognition.
The new logic uses ‘effects’ as predicates, instead of the more restricted interpretation of predicates as
projections — which is used so far in this area. Effect logic involves states and predicates, validity and
conditioning, and also state and predicate transformation via channels. The main aim of this paper is to
demonstrate the usefulness of this effect logic in quantum cognition, via many high-level reformulations
of standard examples. The usefulness of the logic is greatly increased by its implementation in the
programming language Python.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Quantum physics is ‘strange’ and full of counter-intuitive phe-
nomena. Accordingly, the mathematical foundations of quantum
physics are ‘strange’, with observations having a side-effect, non-
commutativity, and context-dependence. In the relatively new
area of quantum cognition one tries to model aspects of human
cognition using the mathematical formalism of quantum theory.
Indeed, some judgements and choices that people make are also
‘strange’, see for instance the many illustrations in Kahneman
(2011). The idea is that quantum logic providesmore suitable ‘laws
of thought’ than classical Boolean logic (Boole, 1854), leading to
more realistic predictions about the type of errors that humans
make.

We briefly mention some of the relevant connections.

• The ‘conjunction and disjunction errors’ in for instance the
Linda example from Tversky and Kahneman (1983) can be
described logically via the fact that quantum conjunction &,
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and the associated disjunction, are not monotone in their
first arguments.

• The relevance of the order of processing information is re-
flected by the non-commutativity of quantum conjunction
&.

• The order effect in inference and priming is mirrored by the
non-commutativity of conditioning of quantum states.

• Different perspectives can be described via the context-
dependence in quantum theory, given by a choice of basis
in a vector (Hilbert) space.

• Answering a question creates a cognitive context in a way
that can be compared to how measurement in quantum
theory changes the state of an object under measurement.

This non-commutativity and context-dependence is the main
reason for moving to quantum logic and probability in cognition
research, see for instance the books by Busemeyer and Bruza
(2012), Khrennikov (2010) for more information, references and
discussion.

The main point of this paper is simple: if one decides to use
quantum logic in cognition, then onemight as well use themodern
and expressive logic of effects, instead of the (restricted) logic of
projections that is being used so far.

Historically, quantum logic started in the 1930s with Birkhoff
and von Neumann (1936). They used a geometric interpretation
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of logical predicates as closed linear subspaces of Hilbert spaces.
These subspaces have the algebraic structure of an orthomodular
lattice (Kalmbach, 1983). Such subspaces can equivalently be de-
scribed as projection operations on Hilbert spaces. In 1990s these
projections have been generalised to ‘effects’, that is, to positive
operation below the identity, which are used as interpretations
of predicates, see Foulis and Bennett (1994) (and independently
Chovanec and Kôpka (2007); Giuntini and Greuling (1994), see
Dvurečenskij and Pulmannová (2000) for an overview). Such ef-
fects have the mathematical structure of an effect algebra/module
and form the basis of a novel approach to quantum probability
(Gudder, 2007). In order to emphasise the difference, projections
are sometimes called ‘sharp’ predicates, and effects are the ‘non-
sharp’ ones. Similarly, in classical (non-quantum) probabilistic
logic one can call {0, 1}-valued functions sharp predicates; they are
contrasted with [0, 1]-valued functions, forming the non-sharp,
fuzzy predicates. A crucial difference is that non-sharp predicates
are closed under sequential conjunction &, under scalar multipli-
cation, and under predicate transformation, as will be explained
below.

In a further line of development it has been shown that effect
module structure arises naturally from a certain elementary cate-
gorical structure, called an ‘effectus’, see Cho, Jacobs, Westerbaan,
and Westerbaan (2015) and Jacobs (2015). These effectuses form
a general framework, including Boolean logic, classical probabilis-
tic logic, and quantum logic. The quantum case involves non-
commutativity of conjunction & and predicates that can have
side-effects. The properly quantum effectuses form the abstract
background for the current article. The main mathematical exam-
ple is given by von Neumann algebras. Here we shall concentrate
on more concrete examples, namely finite-dimensional Hilbert
spaces—whose collections of operators form von Neumann alge-
bras.

Themain claim underlying this paper is that the quantum effect
logic that started in the 1990s is more suitable for application
in cognitive psychology, in comparison to the quantum subspace
logic from the 1930s. This claim will be substantiated via several
examples. These examples are not new, and in fact completely
standard, taken from the well-known textbook (Busemeyer &
Bruza, 2012). This is a deliberate choice, so that (cognition) re-
searchers who are already familiar with these examples can now
recognise them in the new effect formalism. Hence this paper does
not offer any new – mathematical or psychological – results or
theories; instead, it offers a broader logical perspective, supported
by an implementation for calculating probabilities.

Indeed, the abstract logic and probability theory of effectuses
come with an implementation in the popular programming lan-
guage Python, called EfProb, for ‘Effectus Probability’.1 This imple-
mentation defines primitives for probability and logic which can
be used to define states, predicates and channels, and to compute
validities and conditioned states. Interestingly, EfProb has a uni-
form approach to discrete, continuous, and quantum probability.
Here we shall only use the quantum fragment of the language:
all the calculations in the examples below are obtained via EfProb
. How this is done in Python is illustrated in Appendix, for two
of the examples. The EfProb formalisation of all the examples is
made available, so that interested readers can see the details, make
variations, and adapt to their own setting.

We should emphasise that we use theword ‘logic’ as in Birkhoff
and von Neumann (1936), referring to a mathematical interpreta-
tion, and not to a formal system of rules of inference. So far, such
a formal, symbolic logic of effects does not exist. Nevertheless, we

1 EfProb is publicly available via the website efprob.cs.ru.nl, together with an
extensive user manual. Kenta Cho and the current author are the main developers,
see Cho and Jacobs (2017) for an overview.

consider predicates as effects on a Hilbert space, closed under a
number of logical operations, including notably conjunction and
predicate transformation. Similarly, states are density matrices on
a Hilbert space, closed under certain operations, including con-
ditioning and state transformation. In the current approach we
can form composite predicates, via these logical operations, for
expressing different statements, such as ‘‘feminist & bank-teller’’
or ‘‘feminist | bank-teller’’ in the Linda example. Such complex
predicates can be used to represent the situation at hand in logical
form. Subsequentlywe can calculate the validity of such composite
predicates.

In the remainder of this paper we describe in a step-by-step
manner the main ingredients of the logic and probability theory
of effectuses. Illustrations play an important role and are provided
along the way. The reader is assumed to be familiar with the basics
of the Hilbert space formalism of quantum theory, see e.g. Nielsen
and Chuang (2000), Rieffel and Polak (2011) or Busemeyer and
Bruza (2012) and Yearsley and Busemeyer (2016). The exposition
starts with the basic notions of state and predicate, and with the
validity of a predicate in a state, expressed as probability, in the
unit interval [0, 1]. This can be used immediately in the famous
Linda example. After this illustration, some more background in-
formation about effects is given in Section 3, including a brief
comparison to classical probabilistic logic using fuzzy predicates.
Section 4 introduces conditioning (update, revision) of a state
by a predicate, and illustrates this construct in the well-known
polarisation example from physics. Subsequently, Section 5 de-
scribes channels, and forward state transformation and backward
predicate transformation along a channel. These transformations
are illustrated in an example involving a man and a woman with
different perspectives on car brands. Finally, Section 6 illustrates
how the relevance of the order of conditioning quantum states can
be used to describe rulings in a court case depending on the order
in which evidence is presented.

2. States, predicates and validity

This section briefly introduces states and predicates, and illus-
trates how they are used in the Linda example.

States and predicates form the basic ingredients of our frame-
work. It is important to distinguish them clearly, since they play
completely different roles and have different operations. For in-
stance, predicates are closed under multiplication with a scalar
from the unit interval [0, 1], but states are not. Intuitively, a state
ω captures a certain state of affairs, and a predicate p captures
a property of that state. We shall write ω ⊧ p for validity: the
probability, expressed as a number in the unit interval [0, 1], that
property p holds in the state ω. This validity ω ⊧ p may also be
read as the expected value of property p in state ω.

Let H be a finite-dimensional complex Hilbert space. A state ω

of H is a positive operator on H with trace one. That is, ω is linear
function ω : H → H satisfying ω ≥ 0 and tr(ω) = 1. A state is
often called a density matrix. The canonical way to define a state
is to start from a vector |v⟩ ∈ H with norm 1, and consider the
operator |v⟩⟨ v | : H → H . It sends an arbitrary element |w⟩ ∈ H

to the vector ⟨ v | w ⟩·|v⟩. An arbitrary state is a convex combination
of such vector states |v⟩⟨ v |.

A predicate, also called an effect, is a positive operator p on H

below the identity: 0 ≤ p ≤ id. The identity id is given by the
identity/unit matrix, and corresponds to the truth predicate, often
written as 1. For each predicate p there is an orthosupplement,
written as p⊥ or as ∼ p, playing the role of negation. It is defined
by ∼ p = id − p, and satisfies: ∼∼ p = p and p+ ∼ p = 1.
Section 3 gives more mathematical background information about
predicates; at this stage we concentrate on how they are used.
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