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h i g h l i g h t s

• We provide a tutorial on bridge sampling for estimating marginal likelihoods.
• We use the beta-binomial model as a running example.
• We estimate the marginal likelihood for the Expectancy Valence (EV) model.
• We obtain accurate results for individual-level and hierarchical EV model versions.
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a b s t r a c t

The marginal likelihood plays an important role in many areas of Bayesian statistics such as parame-
ter estimation, model comparison, and model averaging. In most applications, however, the marginal
likelihood is not analytically tractable and must be approximated using numerical methods. Here we
provide a tutorial on bridge sampling (Bennett, 1976; Meng & Wong, 1996), a reliable and relatively
straightforward sampling method that allows researchers to obtain the marginal likelihood for models
of varying complexity. First, we introduce bridge sampling and three related sampling methods using the
beta-binomial model as a running example. We then apply bridge sampling to estimate the marginal
likelihood for the Expectancy Valence (EV) model—a popular model for reinforcement learning. Our
results indicate that bridge sampling provides accurate estimates for both a single participant and a
hierarchical version of the EV model. We conclude that bridge sampling is an attractive method for
mathematical psychologists who typically aim to approximate the marginal likelihood for a limited set of
possibly high-dimensional models.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Bayesian statistics has become increasingly popular in mathe-
matical psychology (Andrews & Baguley, 2013; Bayarri, Benjamin,
Berger, & Sellke, 2016; Poirier, 2006; Vanpaemel, 2016; Verhagen,
Levy, Millsap, & Fox, 2015; Wetzels, Tutschkow, Dolan, van der
Sluis, Dutilh, & Wagenmakers, 2016). The Bayesian approach is
conceptually simple, theoretically coherent, and easily applied
to relatively complex problems. These problems include, for
instance, hierarchical modeling (Matzke, Dolan, Batchelder, &Wa-
genmakers, 2015; Matzke & Wagenmakers, 2009; Rouder & Lu,
2005; Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder, Lu, Sun,
Speckman, Morey, & Naveh-Benjamin, 2007) or the comparison
of non-nested models (Lee, 2008; Pitt, Myung, & Zhang, 2002;
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Shiffrin, Lee, Kim, & Wagenmakers, 2008). Three major applica-
tions of Bayesian statistics concern parameter estimation, model
comparison, and Bayesian model averaging. In all three areas, the
marginal likelihood – that is, the probability of the observed data
given the model of interest – plays a central role (see also Gelman
& Meng, 1998).

First, in parameter estimation, we consider a single model and
aim to quantify the uncertainty for a parameter of interest θ after
having observed the data y. This is realized bymeans of a posterior
distribution that can be obtained using Bayes theorem:

p(θ | y) =
p(y | θ ) p(θ )∫

p(y | θ ′) p(θ ′) dθ ′
=

likelihood  
p(y | θ )

prior
p(θ )

p(y)
marginal likelihood

. (1)
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Here, the marginal likelihood of the data p(y) ensures that the
posterior distribution is a proper probability density function (PDF)
in the sense that it integrates to 1. This illustrateswhy in parameter
estimation the marginal likelihood is referred to as a normalizing
constant.

Second, in model comparison, we consider m (m ∈ N) com-
peting models, and are interested in the relative plausibility of a
particular model Mi (i ∈ {1, 2, . . . ,m}) given the prior model
probability and the evidence from the data y (see three special is-
sues on this topic in the Journal of Mathematical Psychology: Mulder
& Wagenmakers, 2016; Myung, Forster, & Browne, 2000; Wagen-
makers &Waldorp, 2006). This relative plausibility is quantified by
the so-called posterior model probability p(Mi | y) of model Mi
given the data y (Berger & Molina, 2005):

p(Mi | y) =
p(y | Mi) p(Mi)∑m
j=1 p(y | Mj) p(Mj)

, (2)

where the denominator is the sumof themarginal likelihood times
the prior model probability of all m models. In model comparison,
the marginal likelihood for a specific model is also referred to as
the model evidence (Didelot, Everitt, Johansen, & Lawson, 2011),
the integrated likelihood (Kass & Raftery, 1995), the predictive
likelihood of the model (Gamerman & Lopes, 2006, chapter 7), the
predictive probability of the data (Kass & Raftery, 1995), or the
prior predictive density (Ntzoufras, 2009). Note that conceptually
the marginal likelihood of Eq. (2) is the same as the marginal
likelihood of Eq. (1). However, for the latter equation we droped
themodel index because in parameter estimationwe consider only
one model.

If only two models M1 and M2 are considered, Eq. (2) can
be used to quantify the relative posterior model plausibility of
model M1 compared to model M2. This relative plausibility is
given by the ratio of the posterior probabilities of bothmodels, and
is referred to as the posterior model odds:
p(M1 | y)
p(M2 | y)  

posterior
odds

=
p(M1)
p(M2)  

prior
odds

×
p(y | M1)
p(y | M2)  

Bayes
factor

. (3)

Eq. (3) illustrates that the posterior model odds are the product
of two factors: The first factor is the ratio of the prior probabilities
of both models—the prior model odds. The second factor is the
ratio of the marginal likelihoods of both models—the so-called
Bayes factor (Etz & Wagenmakers, in press; Jeffreys, 1961; Ly,
Verhagen, & Wagenmakers, 2016a, b; Robert, 2016). The Bayes
factor plays an important role in model comparison and is referred
to as the ‘‘standard Bayesian solution to the hypothesis testing and
model selection problems’’ (Lewis & Raftery, 1997, p. 648) and ‘‘the
primary tool used in Bayesian inference for hypothesis testing and
model selection’’ (Berger, 2006, p. 378).

Third, the marginal likelihood plays an important role in
Bayesian model averaging (BMA; Hoeting, Madigan, Raftery, &
Volinsky, 1999) where aspects of parameter estimation andmodel
comparison are combined. As inmodel comparison, BMA considers
several models; however, it does not aim to identify a single best
model. Instead it fully acknowledgesmodel uncertainty. Model av-
eraged parameter inference can be obtained by combining, across
all models, the posterior distribution of the parameter of interest
weighted by eachmodel’s posterior model probability, and as such
depends on the marginal likelihood of the models. This procedure
assumes that the parameter of interest has identical interpretation
across the different models. Model averaged predictions can be
obtained in a similar manner.

A problem that arises in all three areas – parameter estimation,
model comparison, and BMA – is that an analytical expression of
the marginal likelihood can be obtained only for certain restricted

examples. This is a pressing problem in Bayesian modeling, and in
particular in mathematical psychology where models can be non-
linear and equipped with a large number of parameters, especially
when the models are implemented in a hierarchical framework.
Such a framework incorporates both commonalities and differ-
ences between participants of one group by assuming that the
model parameters of eachparticipant are drawn fromagroup-level
distribution (for advantages of the Bayesian hierarchical frame-
work see Ahn, Krawitz, Kim, Busemeyer, & Brown, 2011; Navarro,
Griffiths, Steyvers, & Lee, 2006; Rouder & Lu, 2005; Rouder et al.,
2005; Rouder, Lu, Morey, Sun, & Speckman, 2008; Scheibehenne
& Pachur, 2015; Shiffrin et al., 2008; Wetzels, Vandekerckhove,
Tuerlinckx, & Wagenmakers, 2010). For instance, consider a four-
parameter Bayesian hierarchical model with four group-level dis-
tributions each characterized by two parameters and a group size
of 30 participants; this then results in 30 × 4 individual-level
parameters and 2 × 4 group-level parameters for a total of 128
parameters. In sum, even simple models quickly become complex
once hierarchical aspects are introduced and this frustrates the
derivation of the marginal likelihood.

To overcome this problem, severalMonte Carlo samplingmeth-
ods have been proposed to approximate themarginal likelihood. In
this tutorial we focus on four such methods: the bridge sampling
estimator (Bennett, 1976, Chapter 5 of Chen, Shao, & Ibrahim,
2012; Meng & Wong, 1996), and its three commonly used special
cases—the naive Monte Carlo estimator, the importance sampling
estimator, and the generalized harmonicmean estimator (for alter-
native methods see Gamerman & Lopes, 2006, Chapter 7; and for
alternative approximation methods relevant to model comparison
and BMA see Carlin & Chib, 1995; Green, 1995).1 As we will
illustrate throughout this tutorial, the bridge sampler is accurate,
efficient, and relatively straightforward to implement (e.g., DiCic-
cio, Kass, Raftery, &Wasserman, 1997; Frühwirth-Schnatter, 2004;
Meng &Wong, 1996).

The goal of this tutorial is to bring the bridge sampling estimator
to the attention of mathematical psychologists. We aim to explain
this estimator and facilitate its application by suggesting a step-
by-step implementation scheme. To this end, we first show how
bridge sampling and the three special cases can be used to approx-
imate the marginal likelihood in a simple beta-binomial model.
We begin with the naive Monte Carlo estimator and progressively
work our way up – via the importance sampling estimator and
the generalized harmonic mean estimator – to the most general
case considered: the bridge sampling estimator. This order was
chosen such that key concepts are introduced gradually and esti-
mators are of increasing complexity and sophistication. The first
three estimators are included in this tutorial with the sole purpose
of facilitating the reader’s understanding of bridge sampling. In
the second part of this tutorial, we outline how the bridge sam-
pling estimator can be used to derive the marginal likelihood for
the Expectancy Valence (EV; Busemeyer & Stout, 2002) model—a
popular, yet relatively complex reinforcement-learning model for
the Iowa gambling task (Bechara, Damasio, Damasio, & Anderson,
1994). We apply bridge sampling to both an individual-level and a
hierarchical implementation of the EV model.

Throughout the article, we use the software package R to im-
plement the bridge sampling estimator for the various models.
The interested reader is invited to reproduce our results by down-
loading the code and all relevant materials from our Open Science
Framework folder at osf.io/f9cq4.

1 The Appendix provides a derivation showing that the first three estimators are
indeed special cases of the bridge sampler.
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