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h i g h l i g h t s

• We investigate how hierarchical models improve point estimates of subject-level parameters.
• One accuracy measure used is the correlation between the model parameter and the subject’s trait variable.
• Another accuracy measure used is the root mean square error from the true parameter.
• For both measures, the conditions under which the hierarchical model is superior to other non-hierarchical methods are clarified.
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a b s t r a c t

Computational models have been used to analyze the data from behavioral experiments. One objective
of the use of computational models is to estimate model parameters or internal variables for individual
subjects from behavioral data. The estimates are often correlated with other variables that characterize
subjects in order to investigate which computational processes are associated with specific personal
or physiological traits. Although the accuracy of the estimates is important for these purposes, the
parameter estimates obtained from individual subject data are often unreliable. To solve this problem,
researchers have begun to use hierarchicalmodeling approaches to estimate parameters of computational
models from multiple-subject data. It is widely accepted that the hierarchical model provides reliable
estimates compared to other non-hierarchical approaches. However, how and under what conditions
the hierarchical models provide better estimates than other approaches has yet to be systematically
investigated. This study attempts to investigate these issues, focusing on two measures of estimation
accuracy: the correlation between estimates of individual parameters and subject trait variables and the
absolute measures of error (root mean squared error, RMSE) of the estimates. An analytical calculation
based on a simple Gaussian model clarifies how the hierarchical model improves the point estimates of
these two measures. We also performed simulation studies employing several realistic computational
models based on the synthesized data to confirm that the theoretical properties hold in realistic
situations.

© 2016 The Author. Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Computational models that provide trial-by-trial predictions of
subjects’ behavior have been recognized as a valuable tool for in-
vestigating underlying neural, cognitive, and psychological pro-
cesses (Corrado & Doya, 2007; Daw, 2011; Lee & Wagenmakers,
2014; O’Doherty, Hampton, & Kim, 2007; Yechiam, Busemeyer,
Stout, & Bechara, 2005). One purpose of using these computational

Abbreviations: HB, hierarchical Bayes; EB, empirical Bayes; MLE, maximum
likelihood estimation; SEIP, standard error (of single-subject MLE) of the individual
parameter; LL, log-likelihood; SDT, signal detection theory; RL, reinforcement
learning; s.d., standard deviation.

E-mail address: katahira@lit.nagoya-u.ac.jp.

models is to estimate latent variables underlying the computa-
tional processes. The estimates are often correlated with neural
signals (e.g., from functional magnetic resonance imaging, fMRI) to
find brain regions that represent the internal variables (O’Doherty,
Dayan, Friston, Critchley, & Dolan, 2003; O’Doherty et al., 2004,
2007; Tanaka et al., 2004). Other applications use the estimates
of model parameters to characterize individual subjects. In such
applications, the parameter estimates of individual model param-
eters are correlated with trait variables of individual subjects1

1 If the individual difference is the phasic state caused by an experimental
manipulation, it should be called ‘‘state’’ variable rather than trait variable.
However, we use ‘‘trait’’ throughout this paper for brevity.
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(e.g., the characteristics of physiological or neural activities, per-
sonality trait, and the degree of mental disorders) to investigate
which parameter is related to which personal trait (Huys et al.,
2012; Katahira, Fujimura, Matsuda, Okanoya, & Okada, 2014; Ku-
nisato et al., 2012; Lindström, Selbing, Molapour, & Olsson, 2014;
Otto, Raio, Chiang, Phelps, & Daw, 2013; Sakamoto, Somatori,
Okubo, & Kunisato, 2015; Suzuki et al., 2012; Yechiam et al., 2005).
For both applications, obtaining accurate parameter estimates for
individual subjects is an important first step.

A typical experiment entails data from multiple subjects.
One method of addressing multiple-subject data in model-based
analysis is to separately estimate different parameter sets for
each subject’s data using maximum likelihood estimation (MLE).
This method is called single-subject MLE. Single-subject MLE is a
straightforward approach for considering individual differences.
However, such individual-level independent analysis often yields
unreliable estimates, especially when the number of trials is
limited. Recently, a hierarchical modeling approach that includes
the group-level population distribution of model parameters has
been used to estimate parameters at the individual level (Ahn,
Krawitz, Kim, Busemeyer, & Brown, 2011; Ahn et al., 2014; Guitart-
Masip et al., 2012; Huys et al., 2011, 2012; Suzuki, Adachi,
Dunne, Bossaerts, & O’Doherty, 2015). A hierarchical model can
incorporate group tendencies aswell as individual differences (e.g.,
Ahn et al., 2011). It is widely recognized that the hierarchical
model approach can provide reliable estimates compared to
parameter estimates that are separately estimated for each subject
(i.e., single-subject MLE).

Our primary focus in this paper is related to the second
purpose of using computational models, i.e., estimating the
correlation between the model parameter for individual subjects
and the trait variables associated with the subjects. It is well
known that a hierarchical model induces ‘‘shrinkage’’ of the
individual parameter estimates towards the population mean
(Efron & Morris, 1977). Thus, it appears to somehow distort
the relative parameter estimates among individuals. Such a
distortion could worsen the estimates of correlation between
the parameter estimates and trait variables. Considering this, a
natural question is howandunderwhat conditions the hierarchical
modeling approach can improve the estimates of the correlation.
Although some studies have evaluated the correlations between
the parameter estimates of HB and true parameters by using
simulations (e.g., Farrell & Ludwig, 2008), this question has not yet
been examined either systematically or analytically. We address
this by combining theoretical analysis of a simple Gaussian model
and systematic simulations based on several practical models.

In addition, we examine the absolute-estimation error of
estimates for individual parameters. Whereas the absolute values
of the parameter estimates do not affect the estimates of
correlation given the relative values among subjects, if the
model estimates are used to construct regressors for neural or
physiological activity data, the absolute values of the estimates
do matter. For example, the regressor obtained from different
parameter values (e.g., temporal discount rate) is correlated with
blood-oxygen-level dependent (BOLD) signals from different brain
regions (Tanaka et al., 2004; seeWilson&Niv, 2015 for a discussion
on robustness against mistuning of model parameters). For this
purpose, single-parameter sets that maximize the likelihood for
aggregated entire subject data have often been used to obtain
stable regressors. This approach is called the fixed-effectMLE. How
and under what conditions the fixed-effect MLE outperforms the
single-subject MLEwith respect to absolute errors in the estimates
and what advantages are provided by hierarchical modeling for
this purpose are investigated in this paper.

We discuss these issues for point estimates rather than for the
entire posterior distribution of the model parameters. Practically,

many methods in cognitive neuroscience and psychology still rely
on point estimates, though full Bayesian analysis is becoming
popular. The following reasons describe why point estimates
are useful: first, when parameter estimates are used for fMRI
analysis, regression is performed for each voxel. The target
voxels can easily become greater than tens of thousands in
number. Thus, incorporating the full posterior distribution of the
model parameter is often infeasible. Although recent studies have
attempted to combine the BOLD signal and behavioral data in
a unified full Bayesian framework (Turner et al., 2013; Turner,
Van Maanen, & Forstmann, 2015), these methods are currently
not scalable to whole-brain, massive voxel data. Second, the point
estimates are easily visualized using correlation plots. In addition,
they can be easily submitted to traditional, mature analysis that
many researchers are still familiar with, although the full Bayesian
approach might be superior, in principle (Kruschke, 2013, 2014).
Because we focus on the point estimates, we do not claim that
the present study concerns the general properties of Bayesian
inference in computational models. However, our theoretically
derived results will also contribute to an understanding of the
properties of hierarchical (full) Bayesian approaches.We also focus
on estimates of parameters at the individual level, rather than
those at the group level. In many situations in psychology, the
population (the group level) distribution is the main concern,
rather than the parameters of individual subjects. However,
there are cases in which individual model parameters matter, as
discussed above.

This paper is organized as follows. In Section 2, we formally
describe the problem settings. We then analyze a simple Gaussian
model as a model for individual subject responses in Section 3.
This model is analytically tractable, and we gain several general
insights. Next, in Section 4, we perform numerical simulations
to confirm that the properties clarified by the analysis of the
Gaussian model also hold in various models that have been
influential in psychology and cognitive neuroscience. The models
include psychophysical functions, signal detection theory (SDT),
a response time (RT) distribution model, and a reinforcement
learning (RL) model (Q-learning model). In Section 5, we discuss
several implications of the results in terms of the fit of the
computational model to multiple-subject data.

2. Problem formulation

Here, we formally describe the scenario that this paper
considers. Suppose that we obtain the behavioral data of N
subjects. Each subject experiences a total of Ti trials. The response
(or action) at the tth trial of the ith subject is denoted by
xit . Computational models represent the internal computational
processes of the subjects and predict the responses of the subjects.
Specifically, the models predict how likely the subjects are to
exhibit a response at trial t . This prediction is represented as
p(xit; θi). This is a probability density function if the response xit
takes on continuous values but is a probability mass function if the
response is defined as a discrete set. θi = (θi,1, . . . , θi,M) denotes
the parameter set of the computational model for the ith subject,
where themth parameter for the ith subject is denoted by θi,m. The
response of the ith subject is denoted as xi = (xi1, . . . , xit), and all
of the subjects’ responses are denoted as x = (x1, . . . , xN).

The main task considered in this paper is estimating the
parameter set θi from the given behavioral data. To focus on
the accuracy of the parameter estimation, we assume that the
fitted model includes the true model and can exactly represent
the underlying computational processes with an appropriate
parameter set. The issues of mis-specification of the model and
model comparison are not addressed in this paper.
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