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h i g h l i g h t s

• We introduce modified forms of lexicographic products of total preorders, called Z-products.
• We introduce a modified form of the trace of a semiorder, called sliced trace.
• Any semiorder embeds in a Z-product whose extreme factors are the transitive closure and a sliced trace.
• Z-lines, which are Z-products having linear orders as extreme factors, are universal semiorders.
• Rabinovitch’s result on the dimension of a strict semiorder is a corollary of our description.
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a b s t r a c t

A Z-product is a modified lexicographic product of three total preorders such that the middle factor is
the chain of integers equipped with a shift operator. A Z-line is a Z-product having two linear orders as
its extreme factors. We show that an arbitrary semiorder embeds into a Z-product having the transitive
closure as its first factor, and a sliced trace as its last factor. Sliced traces are modified forms of traces
induced by suitable integer-valued maps, and their definition is reminiscent of constructions related to
the Scott–Suppes representation of a semiorder. Further, we show that Z-lines are universal semiorders,
in the sense that they are semiorders, and each semiorder embeds into a Z-line. As a corollary of this
description, we derive the well known fact that the dimension of a strict semiorder is at most three.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Semiorders are among the most studied categories of binary
relations in preference modeling. This is due to the vast range of
scenarios which require themodelization of a preference structure
to be more flexible and realistic than what a total preorder can
provide. On this point, Chapter 2 of the monograph on semiorders
by Pirlot and Vincke (1997) gives a large account of possible
applications of semiordered structures to various fields of research.

The concept of semiorder originally appeared in 1914 – albeit
under a different name – in the work of Fishburn and Monjardet
(1992) and Wiener (1914). However, this notion is usually
attributed to Luce (1956), who formally defined a semiorder
in 1956 as a pair (P, I) of binary relations satisfying suitable
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properties. The reason that motivated Luce to introduce such a
structure was to study choice models in settings where economic
agents exhibit preferences with an intransitive indifference. Luce’s
original definition takes into account the reciprocal behavior of
the strict preference P (which is transitive) and the indifference
I (which may fail to be transitive). Nowadays, a semiorder
is equivalently defined as either a reflexive and complete
relation that is Ferrers and semitransitive (sometimes called a
weak semiorder), or an asymmetric relation that is Ferrers and
semitransitive (sometimes called a strict semiorder).

Due to the universally acknowledged importance of semi-
ordered structures, several contributions to this field of research
have appeared since Luce’s seminal work. Many papers on
the topic deal with representations of semiorders by means of
real-valued functions (Beja & Gilboa, 1992; Campión, Candeal,
Induráin, & Zudaire, 2008; Candeal & Induráin, 2010; Candeal,
Induráin, & Zudaire, 2002; Gensemer, 1987; Krantz, 1967; Lehrer
& Wagner, 1985; Manders, 1981; Monjardet, 1978; Nakamura,
2002), whereas others study the weaker notion of interval order,
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introduced by Fishburn (1970), Fishburn (1973) and Fishburn
(1985). On the topic of real-valued representations of interval
orders and semiorders, a relevant issue is the connection among
several notions of separability: Cantor, Debreu, Jaffray, strongly,
weakly, topological, interval order, semiorder, etc.: on the point,
see, e.g., Bosi, Candeal, Induráin, Olóriz, and Zudaire (2001)
and Candeal, Estevan, Gutiérrez García, and Induráin (2012)
and references therein. The most comprehensive reference on
semiorders is the monograph of Pirlot and Vincke (1997). For the
relation among utility representations, preferences, and individual
choices, we refer the reader to the recent treatise of Aleskerov,
Bouyssou, and Monjardet (2007).1 Semiordered structures have
also been studied in the context of the assessment of knowledge
and the construction of a teaching engine: concerning these topics,
see the monographs on knowledge spaces (Doignon & Falmagne,
1999) and learning spaces (Falmagne & Doignon, 2011), as well as
the notion of a well-graded family of binary relations (Doignon &
Falmagne, 1997).

In 1958 Scott and Suppes (1958) tried to identify a semiorder
by means of the existence of a shifted real-valued utility function
u, in the following sense: xPy (to be read as ‘‘alternative y is strictly
preferred to alternative x’’) holds if and only if u(x) + 1 < u(y).
In this representation, the real number 1 is to be intended as
a ‘‘threshold of perception or discrimination’’, which gives rise
to the so-called just noticeable difference (Manders, 1981). The
shifted utility function u is classically referred to as a Scott–Suppes
representation of the semiorder.

It iswell known that not every semiorder admits a Scott–Suppes
representation. In fact, as S̀wistak points out in S̀wistak (1980),
the existence of a Scott–Suppes utility function imposes strong
restrictions of the structure of a semiorder. However, this type of
representation has been given a lot of attention over time, due
to its importance in several fields of research, such as extensive
measurement in mathematical psychology (Krantz, 1967; Lehrer
& Wagner, 1985), choice theory under risk (Fishburn, 1968),
decision-making under risk (Rubinstein, 1988), modelization of
choice with errors (Agaev & Aleskerov, 1993), etc.2

Scott and Suppes (1958) showed that every finite semiorder al-
ways admits such a representation (see also Rabinovitch, 1977). In
1981 Manders (1981) proved that – under a suitable condition re-
lated to the non-existence of monotone sequences with an upper
bound in the set (a property later on called regularity) – countable
semiorders have a Scott–Suppes representation as well. A similar
result was obtained in 1992 by Beja and Gilboa (1992), who intro-
duced new types of representations –GNR andGUR, having an ap-
pealing geometric flavor – of both interval orders and semiorders.

Following a stream of research providing ‘‘external’’ charac-
terizations of Scott–Suppes representable semiorders (Candeal
et al., 2002), in 2010 Candeal and Induráin (Candeal & Induráin,
2010) obtained what they call an ‘‘internal’’ characterization of
the Scott–Suppes representability of an arbitrary semiorder. Their
characterization uses both regularity and s-separability, the latter
being a condition similar to the Debreu-separability of a total pre-
order but involving the trace of the semiorder.3

1 On individual choice theory and the associated theory of revealed preferences,
see also (Cantone, Giarlotta, Greco, &Watson, 2016) (and references therein), where
the authors develop an axiomatic approach based on the satisfaction of the so-called
weak(m, n)-Ferrers properties, recently introduced by Giarlotta andWatson (2014b)
(which include semiorders as particular cases, that is, binary relations that are both
weakly (2, 2)-Ferrers and weakly (3, 1)-Ferrers).
2 See Abrísqueta et al. (2012) for a very recent survey on the Scott–Suppes

representability of a semiorder.
3 By external the authors mean that the characterization is based on the

construction of suitable ordered structures that are related to the given semiorder.
On the other hand, internalmeans that the characterization is entirely expressed in
terms of structural features of the semiorder.

There aremany additional studies on semiorders,most ofwhich
however restrict their attention to the finite case. As a matter
of fact, the monograph on semiorders (Pirlot & Vincke, 1997) is
almost entirely dedicated to finite semiorders, due to the intrinsic
difficulties connected to the analysis of the infinite case.4 Among
the studies that concern infinite semiorders, let us mention the
work of Rabinovitch (1978),who proved in 1978 that the dimension
of a strict semiorder is at most three (that is, the asymmetric part
of a semiorder can be always written as the intersection of three
strict linear orders).

In this paper, we describe the structure of an arbitrary
semiorder, regardless of its size. In fact, we obtain a universal type
of semiorder, in which every semiorder embeds (Theorem 5.6).
These universal semiorders are suitably modified forms of
lexicographic products of three total preorders. Themodification is
determined by a shift operator, which typically creates intransitive
indifferences. Since the middle factor of these products is always
the standard linear ordering (Z, ≤), and the shift operator is
applied to it, we call these modified lexicographic structures
Z-products. In particular, we prove that Z-lines, which are the
Z-products having linear orders as their extreme factors, are
universal semiorders as well (Corollary 5.7).

Our results on semiorders are related to a general stream of re-
search that uses lexicographic products to represent preference re-
lations. In this direction, the literature in mathematical economics
has been mainly focused on lexicographic representations of well-
structured preferences, which assume the form of total preorders
or linear orders. Historically – following some order-theoretic re-
sults of Hausdorff (1914) and Sierpiński (1940) concerning rep-
resentations by means of lexicographically ordered transfinite
sequences – Chipman (1971) and Thrall (1954) were the first au-
thors to develop a theory of lexicographic preferences. Among
the several important contributions that followed, let us recall
the structural result of Beardon, Candeal, Herden, Induráin, and
Mehta (2002), which provides a subordering classification of all
chains that arenon-representable inR (that is, they cannot be order-
embedded into the reals).5 The (dated but always valuable) survey
of Fishburn (1974) provides a good source of references on lexico-
graphic representations of preferences.6

The results on lexicographic structures mentioned in the
previous paragraph describe linear orders in terms of universal
linear orders. The main result of this paper has a similar flavor,
since it describes semiorders in terms of universal semiorders,
that is, Z-products (and, in particular, Z-lines). In the process of
obtaining such a representation, we explicitly construct a special
Z-product in which a given semiorder embeds (Theorem 5.6(iv)).
The procedure that allows us to differentiate the elements of a
semiordered structure can be summarized as follows:

4 To further emphasize this point, note that the First Edition (2002) of the treatise
of Aleskerov et al. (2007) on utilitymaximization, choice and preferencewas almost
entirely dedicated to covering the analysis of the finite case. This is the main reason
why a Second Edition of the book appeared in 2007. In fact, Chapter 6 of Aleskerov
et al. (2007) is now entirely dedicated to preference representation theory for the
infinite case (in particular, infinite semiorders).
5 The mentioned result directly involves a basic prototype of lexicographic

product, namely, the lexicographically ordered real plane R2
lex . (Note that R2

lex is
the example used by Debreu (1954) in his famous paper on the Open Gap Lemma to
disprove the inveterate belief that ordered preferences admit a real-valued utility
representation.) Beardon et al. (2002) prove the following: A linear ordering is non-
representable in R if and only if it is either (i) long (i.e., it contains a copy of the
first uncountable ordinal ω1 or its reverse ordering ω∗

1 ), or (ii) large (i.e., it contains
a copy of a non-representable subset of R2

lex), or (iii) wild (i.e., it contains a copy of
an Aronszajn line, which is an uncountable chain such that neither ω1 nor ω∗

1 nor an
uncountable subchain of the reals embeds into it.)
6 For recent contributions on the topic, the reader may consult (Candeal &

Induráin, 1999; Giarlotta, 2004, 2005; Giarlotta & Watson, 2009, 2013, 2014a;
Knoblauch, 2000) and references therein.
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