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HIGHLIGHTS

Provides an in depth discussion of (sequential) importance sampling.
Highlight advantages and issues with SMC.
All examples can be replicated with provided R code.

Introduces the reader to particle filters and sequential Monte Carlo (SMC).
SMC allows Bayesian inference in complex dynamic models common in psychology.
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This tutorial aims to provide an accessible introduction to particle filters, and sequential Monte Carlo
(SMC) more generally. These techniques allow for Bayesian inference in complex dynamic state-space
models and have become increasingly popular over the last decades. The basic building blocks of SMC
- sequential importance sampling and resampling - are discussed in detail with illustrative examples.

A final example presents a particle filter for estimating time-varying learning rates in a probabilistic
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Particle filters, and sequential Monte Carlo (SMC) techniques
more generally, are a class of simulation-based techniques which
have become increasingly popular over the last decades to per-
form Bayesian inference in complex dynamic statistical models
(e.g., Doucet, de Freitas, & Gordon, 2001b; Doucet & Johansen,
2011). Particle filters are generally applied to so-called filtering
problems, where the objective is to estimate the latent states of
a stochastic process on-line, such that, after each sequential obser-
vation, the state giving rise to that observation is estimated. For
instance, in a category learning task, we might want to infer how
people use the features of objects to categorize them. Due to learn-
ing, we would expect their categorization strategy to change over
time. Traditionally, a formal learning model such as ALCOVE (Kr-
uschke, 1992) would be used for this purpose, which describes how
feedback on their categorization decisions affects people’s momen-
tary strategy. However, these models usually assume a determin-
istic updating process, which may be too restrictive. Ideally, we
would like to estimate someone’s strategy - which we can view as
the latent state of their decision process - from trial to trial whilst
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allowing for stochastic transitions between states. Estimating the
current categorization strategy is a difficult task, however, as a sin-
gle categorization decision at each point in time provides relatively
little information about people’s complete categorization strategy,
i.e. their potential categorizations of all possible stimuli. Assum-
ing trial-to-trial changes to a state (strategy) are noisy but rela-
tively small, we may however be able to gain some insight into the
current state from all previous categorization decisions someone
made. This filtering problem is generally not analytically tractable;
analytical results are only available for the restricted class of lin-
ear Gaussian state-space models. As particle filters are applicable
to the much broader class of non-linear non-Gaussian state-space
models, they open up interesting possibilities to study a broad
range of dynamic processes in psychology.

A graphical representation of a generic particle filter (see
Section 4.3) is given in Fig. 1. Particle filters operate on a set of
randomly sampled values of a latent state or unknown parameter.
The sampled values, generally referred to as “particles”, are
propagated over time to track the posterior distribution of the
state or parameter at each point in time. Each particle is assigned
a weight in relation to its posterior probability. To increase their
accuracy, SMC techniques resample useful particles from the set
according to these weights. This resampling introduces interaction
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Fig. 1. Schematic representation of a generic particle filter (after Doucet et al., 2001a). Standing at time t, we have a set of weighted particles {qbgi)[, sz } representing the
prior distribution at t. Each particle ¢é”r is a multidimensional variable which represents the whole path of the latent state from time O up to the current time point t, such
that each dimension represents the value of the state at a particular time point. The location of the dots in the graph reflect zpt“), the value of the state at the current time point,
i.e. the dimension of each particle reflecting the current state. The size of each dot reflects the weight W[(?l (“prior at t”). In the reweight step, the weights are updated to Wt(i)
partly as a function of p(y, |¢[m). the likelihood of observation y, according to each sampled state value d);“ (solid line). The resulting set { é’)[ W[“)} of weighted particles
approximates the posterior distribution (“posterior at t”) of the latent state paths. The resampling step duplicates values ¢>é')t with high weights W(U, and eliminates those
with low weights, resulting in the set of uniformly weighted particles {c}é’)t, Wfi) = 1/N} which is approximately distributed according to the posterior (second “posterior

at t”). In the propagate step, values of states 4)[(21 at the next time point are sampled and added to each particle to account for state transitions, forming a prior distribution

for time t 4+ 1 (“prior at t + 1”). Thus, at each new time point, the particles grow in dimension because the whole path of the latent state now incorporates the new time
point as well. The particles are then reweighted in response to the likelihood of the new observation y;.; to approximate the posterior distribution at t + 1 (“posterior at

t+17") etc.

between the particles, and the term “interacting particle filters”
was coined by Del Moral (1996), who showed how the method
relates to techniques used in physics to analyze the movement of
particles.

Particle filters have successfully solved difficult problems in
machine learning, such as allowing robots to simultaneously map
their environment and localize their position within it (Monte-
merlo, Thrun, Koller, & Wegbreit, 2002), and the automated track-
ing of multiple objects in naturalistic videos (Isard & Blake, 1998;
Nummiaro, Koller-Meier, & Gool, 2003). More recently, particle fil-
ters have also been proposed as models of human cognition, for in-
stance how people learn to categorize objects (Sanborn, Griffiths,
& Navarro, 2010), how they detect and predict changes (Brown &
Steyvers, 2009) as well as make decisions (Yi, Steyvers, & Lee, 2009)
in changing environments.

The aim of this tutorial is to provide readers with an accessible
introduction to particle filters and SMC. We will discuss the foun-
dations of SMC, sequential importance sampling and resampling,
in detail, using simple examples to highlight important aspects of
these techniques. We start with a discussion of importance sam-
pling, which is a Monte Carlo integration technique which can be
used to efficiently compute expected values of random variables,
including expectations regarding the posterior probabilities of la-
tent states or parameters. We will then move on to sequential im-
portance sampling, an extension of importance sampling which
allows for efficient computation in sequential inference prob-
lems. After introducing resampling as a means to overcome some
problems in sequential importance sampling, we have all the in-
gredients to introduce a generic particle filter. After discussing
limitations and extensions of SMC, we will conclude with a more
complex example involving the estimation of time-varying learn-
ing rates in a probabilistic category learning task.

1. Importance sampling

Importance Sampling (IS) is a Monte Carlo integration tech-
nique. It can be used to efficiently solve high-dimensional in-
tegration problems when analytical solutions are difficult or

unobtainable. In statistics, it is often used to approximate expected
values of random variables, which is what we will focus on here. If
we have a sample of realizations of a random variable Y, we can
estimate the expected value by computing a sample average. We
do this when we have data from experiments, and it is also the
idea behind basic Monte Carlo integration. Importance sampling is
based on the same idea, but rather than sampling values from the
true distribution of Y, values are sampled from a different distribu-
tion, called the importance distribution. Sampling from a different
distribution can be useful to focus more directly on the estimation
problem at hand, or if it is problematic to sample from the target
distribution. To correct for the fact that the samples were drawn
from the importance distribution and not the target distribution,
weights are assigned to the sampled values which reflect the dif-
ference between the importance and target distribution. The final
estimate is then a weighted average of the randomly sampled val-
ues.

Suppose we wish to compute the expected value of an arbitrary
function f of a random variable Y which is distributed according to
a probability distribution p:

B[ (V)] & / F@IPO) dy.

This is just the usual definition of an expected value (we use E,
to denote an expectation of a random variable with distribution
p, and the symbol £ to denote ‘is defined as’). The function f
depends on what we want to compute. For instance, choosing
f(¥) = y would result in computing the mean of Y, while choosing
fo) = @ — ]Ep[f(Y)])2 would result in computing the variance
of Y. It is often not possible to find an analytical solution to the
integral above, in which case we have to turn to some form of
numerical approximation. A basic Monte Carlo approximation is to
draw a number of independent samples from p and then compute
a sample average from these random draws:

Algorithm 1. Basic Monte Carlo integration for an expected value

Eplf(Y)]
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