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h i g h l i g h t s

• We discuss the general philosophical concept of evidence, connecting it to statistics.
• We outline how statistical evidence can be quantified using the Bayes factor.
• We discuss the philosophical details and difficulties in using the Bayes factor.
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a b s t r a c t

A core aspect of science is using data to assess the degree to which data provide evidence for competing
claims, hypotheses, or theories. Evidence is by definition something that should change the credibility
of a claim in a reasonable person’s mind. However, common statistics, such as significance testing and
confidence intervals have no interface with concepts of belief, and thus it is unclear how they relate to
statistical evidence.We explore the concept of statistical evidence, and how it can be quantified using the
Bayes factor. We also discuss the philosophical issues inherent in the use of the Bayes factor.
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A core element of science is that data are used to argue for or
against hypotheses or theories. Researchers assume that data – if
properly analyzed – provide evidence, whether this evidence is
used to understand global climate change (Lawrimore et al., 2011),
examine whether the Higgs Boson exists (Low, Lykken, & Shaugh-
nessy, 2012), explore the evolution of bacteria (Barrick et al., 2009),
or to describe human reasoning (Kahneman & Tversky, 1972). Sci-
entists using statistics oftenwrite as if evidence is quantifiable: one
can have no evidence, weaker evidence, stronger evidence—but
importantly, statistics in commonuse do not readily admit such in-
terpretations. The use of significance tests and confidence intervals
are cases in point (Berger & Sellke, 1987; Berger & Wolpert, 1988;
Jeffreys, 1961; Wagenmakers, Lee, Lodewyckx, & Iverson, 2008).
Instead, these statistics are designed to make decisions, such as
rejecting a hypothesis, rather than providing for a measure of ev-
idence. Consequently, statistical practice is beset by a difference
between what statistics provide and what is desired from them.
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In this paper, we explore a statistical notion that does allow
for the desired interpretation as a measure of evidence: the Bayes
factor (Good, 1979, 1985; Jeffreys, 1961; Kass & Raftery, 1995).
Our central claim is that the computation of Bayes factors is an
appropriate, appealing method for assessing the impact of data on
the evaluation of hypotheses. Bayes factors present a useful and
meaningful measure of evidence.

To arrive at the Bayes factor, we explore the concept of evidence
more generally in Section 1. We make a number of reasoned
choices for an account of evidence, identify certain properties that
should be reflected in our account, and then show that an account
using Bayes factors fits the bill. In Section 2.1 we give a detailed
introduction into Bayesian statistics and the use of Bayes factors,
giving particular attention to certain conceptual issues. In Section 3
we offer some examples of the use of Bayes factors as measure of
evidence, and in Section 4we consider critiques of this use of Bayes
factors and difficulties inherent in their application.

1. Evidence

What is evidence? Our answer is that the evidence presented by
data is given by the impact that the data have on our evaluation of
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a theory (e.g., Fox, 2011).1 In what follows we develop an account
that ties together three central notions in this answer (theory,
evaluation, and the impact of data) and then motivate the use of
Bayes factors in statistics. One important caveat: our exposition
falls far short of a fully worked out theory of evidence, and we do
not offer a defense of Bayes factors as the only statisticalmeasure of
it.We cannot treat evidence or Bayes factors in sufficient generality
and detail to warrant such wide-scope conclusions; there may
well be other suitable measures, e.g., model selection tools. We
argue that Bayes factors reflect the key properties of a particular
conception of evidence but we do not assess the competition.

1.1. Theory: empirical hypotheses

One possible goal of scientific inquiry is instrumental: it is
enough to predict and control the world by means of some sci-
entific system, e.g., a theory or a prediction device. The format of
such a system is secondary to the goal. In particular, there is no
reason to expect that system will employ general hypotheses on
how the world works, or that it will involve evaluations of those
hypotheses. But another important goal of science is epistemic: sci-
ence offers us an adequate representation of the world, or at least
one that lends itself for generating explanation as well as predic-
tion and control. For such purposes, the evaluation of hypotheses
seems indispensable. Of course, a system used for prediction and
control might include evaluations of hypotheses as well. Our point
is that in an instrumentalist view of science an evaluative mode
(e.g., an interface with beliefs) is not mandatory while in an epis-
temic view it is.

The idea that scientific inquiry has epistemic implications is
common among scientists. One important example of recent im-
port is the debate over global climate change. The epistemic nature
of this debate is hard to miss. Much attention has been given, for
instance, to the consensus of climate scientists; that is, that nearly
all climate scientists believe that global climate change is caused by
humans. The available data is assumed to drive climate scientists
opinions; the fact of consensus then drives public opinion and pol-
icy on the topic. Those not believing with the consensus are called,
pejoratively, ‘‘deniers’’ (Dunlap, 2013). It seems safe to say that we
cannot altogether do away with epistemic goals in science.

An epistemic goal puts particular constraints on the format
of scientific theory: it will have to allow for evaluations of
how believable or plausible the theory is, and it must contain
components that represent nature, or the world, in some manner.
We call those components hypotheses.2 There is a large variety of
structures that may all be classified as hypotheses in virtue of their
role in representing the world. A hypothesis might be a distinct
mechanism, the specification of a type of process, a particular
class of solutions to some system of equations, and so on. For
all hypotheses, however, an important requirement is that they
entail predictions of data. Scientistswould regard a hypothesis that
has no empirical consequences as problematic. Moreover, it is a
deeply seated conviction amongmany scientists that the success of
a theory should be determined on the basis of its ability to predict
the data. In short, the hypotheses must have empirical content.

1 Although there is a large debate within the philosophy of science about the
relation between data, facts, phenomena, and the like (e.g., Bogen & Woodward,
1988), we will align ourselves with scientific practice here and simply employ the
term ‘‘data’’ without making further discriminations. It will lead us too far afield to
add further considerations.
2 In the philosophy of science literature, those structures are often referred to as

models. But in a statistical context models have a specific meaning: they are sets
of distributions over the sample space that serve as input to a statistical analysis.
To avoid confusion when we introduce statistical models later, we use the term
‘‘hypotheses’’.

The foregoing claimsmay seemcompletely trivial to our current
readers. However, they are all subject to controversy in the philos-
ophy of science. There are long-standing debates on the nature, the
use and the status of scientific theory. It is far from clear that sci-
entific hypotheses are intended to represent something, and that
they always have empirical content.3 And a closer look at science
also gives us a more nuanced view. Consider a statistical tool like
principal component analysis, in which the variation among data
points is used to identify salient linear combinations of manifest
variables. Importantly, this is a data-driven technique that does
not rely on any explicitly formulated hypothesis. The use of neu-
ral networks and other data-mining tools for identifying empiri-
cal patterns are also cases in point, certainly when these tools are
seen merely as pattern-seeking devices. The message here is that
scientific theory need not always have components that do repre-
sentational work. However, the account of evidence thatmotivates
Bayes factors does rely on hypotheses as representational items,
and does assume that these hypotheses have empirical content.4

1.2. Evaluations: belief and probability

As we have argued, the epistemic goals of science lead to a par-
ticular understanding of scientific theory: it consists of empirical
hypotheses that somehow represent the world. Within statistical
analysis, we indeed find that theory has this character: statisti-
cal hypotheses are distributions that represent a population, and
they entail probability assignments over a sample space.5 A fur-
ther consequence of taking science as an epistemic enterprise was
already briefly mentioned: scientific theory must allow for evalu-
ations, and hence interface with our epistemic attitudes. These at-
titudes include expectations, convictions, opinions, commitments,
assumptions, and more. But for ease of reference we will simply
speak of beliefs in what follows. Now that we have identified the
representational components of scientific theory as hypotheses,
the requirement is that these hypotheses must feature in our be-
liefs. And our account of evidence must accommodate such a role.

The exact implications of the involvement of belief depend on
what we take to be the nature of beliefs, and on the specifics of
the items featuring in it. There aremanyways of representing both
the beliefs and the targets of beliefs. For example, when expressing
the strength of our adherence to a belief we might take them
as categorical, e.g., dichotomous between accepted and rejected,
or graded in some way or other. Moreover, the beliefs need not
concern the hypothesis in isolation. In an account of evidence, the
beliefs might just as well pertain to relations between hypotheses
and data. Consequently, the involvement of beliefs does not, by
itself, impose that we assign probabilities to hypotheses. And it
does not entail the use of Bayesian methods to the exclusion
of others either. Numerous interpretations of, and add-ons to,
classical statistics have been developed to accommodate the
need for an epistemic interpretation of results (for an overview
see Romeijn, 2014).

3 See, e.g., Bird (1998) and Psillos (1999) for introductions into the so-called
realism debate.
4 Clearly this leaves open other motivations for using Bayes factors to evaluate

neural networks and the like. Moreover, data-driven techniques are often used for
informal hypothesis generation. While the formal evidence evaluation techniques
discussed here may not be appropriate for such exploratory techniques, they may
be appropriate for later products of such techniques.
5 Notice that the theoretical structure fromwhich the statistical hypotheses arise

may be far richer than the hypotheses themselves, involving exemplars, stories, bits
of metaphysics, and so on. In the philosophy of statistics, there is ongoing debate
about the exact use of this theoretical superstructure, and the extent to which it
can be detached from the empirical substructure. Romeijn (2013) offers a recent
discussion of this point, placing hierarchical Bayesian models in the context of
explanatory reasoning in science.
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