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e Extension of Bayesian Model Selection based on data distributions, termed BMS*.
e Induction is upon data which are a sample from the ‘true’ data generating distribution.
e Traditional BMS is a special case based on a restricted set of data distributions.
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This article comments on “Harold Jeffreys’s Default Bayes Factor Hypothesis Tests: Explanation, Extension,
and Application in Psychology” by Ly, Verhagen and Wagenmakers (in this issue). Their article represents
an excellent summary of the seminal contributions of Harold Jeffreys to Bayesian induction. We comment
on a method to extend Bayesian induction that places the emphasis on data rather than models. Models
are always wrong, acting as approximations to the data from which they derive and thereby explaining

BMS* some of the main factors operating in the experiment. Our simple extension places priors and posteriors

Data distributions

on the possible distributions of data outcomes, one of which represents the true state of the world—the

observed data is a sample from that unknown true state. The proposed system infers the probability that
a given data distribution is the true one, based on the observed sample of data; the posterior probabilities
that given model instances provide best approximations to the truth can then be obtained directly.

© 2015 Elsevier Inc. All rights reserved.

1. Extending Bayesian induction

Harold Jeffreys had extraordinary insight into the use of
Bayesian induction in scientific practice. We believe his ideas can
be extended in ways that further rationalize and justify the ap-
proach. The article by Ly, Verghan, and Wagenmakers (in this is-
sue) summarizes his use of Bayesian induction, leading to the
result given in their Eq. (3) that the posterior odds for one model
class over another is just the prior odds for those classes times
the likelihood ratio: the probability of the data given one class di-
vided by the probability of the data given the other class. Each
model class consists of what (Shiffrin, Chandramouli, & Griinwald,
in this issue) term model instances—model instances are mem-
bers of a model class with all parameters having specified values.
Thusy = ax 4+ b + ¢ is a class of linear functions with Gaussian
noise ¢ ~ N(0,0);y = 2x + 3 4+ N(0, 2) is a model instance
within that class specifying a particular linear function with a par-
ticular value of Gaussian noise. For reasons given in Shiffrin et al.
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(in this issue) this commentary will instantiate all probabilities and
data outcomes with discrete values (using suitably small intervals),
so all integrals are replaced by finite sums. Bayesian induction im-
plies that the posterior odds equals the Bayes Factor (BF) times the
prior odds for the classes—the discrete version is given in Eq. (1).
The classes being compared are made of model class instances that
are here denoted 6; and A;, respectively. Let p,(My) = Xip,(6;, Mg)
and p,(M1) = Xip,(Ai, M1). Then, the Bayes Factor is the left hand
term in Eq. (1): the sum across the model instances in one class of
priors time likelihoods, divided by the sum of priors times likeli-
hoods for the other class.

P (y|6;, Mg) Py (6;|M
P (Moly) 2P0k Mo Po (HMo)]

P(Mily) Y [P (vIAi, My) Po (MM )] Po (M)

i

(1)

2. Extending Bayesian induction

Bayesian induction focuses on model instances and classes.
Each model instance predicts a distribution of data outcomes for
the present study, and thereby assigns a probability to the ob-
served data outcome. The model instances in all model classes
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predict many different data distributions but certainly not all.
For example a model class might propose that n, the number of
successes observed in N trials, is binomial with probability p of
success on each trial; for N = 4, the probabilities of n suc-
cesses would then be C,p" (1 — p)*~". Different values of the pa-
rameter p produce different binomial distributions for n. E.g. for
N = 4 and p = 0.5 we would have the distribution [1/16; 1/4;
3/8; 1/4; 1/16] for 0 to 4 successes. However, binomial distribu-
tions hardly exhaust the total possible distributions of successes;
non-binomial distributions include [0.20, 0.20, 0.20, 0.20, 0.20]
and [0.6, 0, 0, 0.1, 0.3]. Shiffrin and Chandramouli (in press) pro-
posed an extension of Bayesian induction in which priors are as-
signed to possible data distributions for the present experiment.
The idea in short is that one (unknown) data distribution repre-
sents reality and a sample from that ‘true’ data distribution pro-
duces the observed data. Then Bayes Theorem is used to revise the
prior distributions and produce posterior distributions for the pos-
sible data distributions. This general idea is not novel and is repre-
sented in a different form in a Journal of Mathematical Psychology
article by Karabatsos (2006).

Where do model classes and model instances fit into the simple
scheme? The model instances in all the classes under consideration
each predict a data distribution. These predicted data distributions
are only a small subset of the possible data distributions, but
the priors and posteriors for each can be derived from the priors
and posteriors for all data distributions by simple summation.
One first defines a metric by which to compare distributions—
we have termed this criterion G (it could for example be some
form of Kullback-Leibler). Using G we can establish which data
distributions are best matched by the predicted data distribution
for each model instance. Ignoring the possibility of ties, which
would not occur often enough to matter, ‘best’ match implies that
all data distributions are partitioned into disjoint subsets; each
subset contains distributions that are a best match to a given model
instance. The priors (or posteriors) for a given instance are then
a simple sum of the priors (or posteriors) for its best matching
subset. Then the priors (or posteriors) for a model class are simply
a sum of the priors (or posteriors) of the model instances in that
class.

Thus what we are doing is using the observed data to carry
out inference, but not inferring the probability that some model
instance is ‘true’, but rather inferring the probability that some
model instance is the best approximation to the truth. Of course
‘best’ depends on the choice of G, which depends in turn on one’s
goals of inference. When matching distributions one could for
example choose to weight the center of distributions more than the
extremes, or any other metric that satisfies one’s inference goals.

A relatively full description of the proposed system and
equations showing how it works are given in Shiffrin and
Chandramouli (in press). A shorter description that nonetheless
unpacks the brief comments above will be given in the following
sections. It turns out that two figures provide the easiest way to
depict how our extended version of Bayesian induction works—
these are given in Figs. 1 and 2. Fig. 1 shows the situation holding
before one collects data from the present experiment, based on
one’s prior knowledge. Fig. 2 is similar but depicts the new
probabilities holding after the observed data has been taken into
account.

3. Experimental outcomes

The possible measured outcomes of an entire experiment, or
more precisely the subset or summary of what is measured that
are reported and used for induction, are listed along the top of the
table. Each potential outcome can be highly multidimensional and
enormous in size (e.g. terabytes of data), but it is easiest to follow

the exposition with a toy example: Suppose we wish to assess the
probability p(s) that a drug will produce a cure in a fixed amount of
time, and apply the drug 10 times. The outcome is defined as the
number of successes, n. There are 11 possible outcomes, ranging
from O to 10, and thus there would be 11 columns in the table.

4. Data distributions

The real world produces a distribution of outcomes that will
occur in the study, one of which is sampled when we carry out the
study. This distribution is represented as a set of probabilities that
sum to 1.0 and is represented is a row inside the table. For example
if the drug had a true cure rate of exactly 0.4 for every person, the
‘true’ distribution would be binomial with p(s) = 0.4. There are
numerous distributions possible, and we never know which is the
‘true’ one, but we use data to move our beliefs toward the truth.
More precisely we use induction on the observed data to alter our
current beliefs in a direction consistent with the data. Typically
induction increases our confidence in certain distributions being
true, and our confidence in certain model instances being best
approximations to that truth.

Thus in the rows of the table we list all data distributions
(a finite number because we have discretized probabilities). One
such distribution would be the one just mentioned, binomial with
p(s) = 0.4. Another distribution would assign 0.8 ton = 0, 0.1 to
n = 1, and (0.1/9) to each of the remaining values of n. Another
distribution would assign equal probabilities to all n.!

Why do we represent the ‘true’ state of the world that produces
the data as a distribution? There are uncounted numbers of
variables that affect the results that are unknown, un-measurable,
or ignored, but would alter the results in what would be the most
precise replication possible. Thus if we flipped a fair coin 100 times
we might expect a binomial distribution for n with p(s) = 0.5.
The uncountable number of unknown variables include the forces
imported to the coin when it is released, the air currents and air
pressure, the nature of the surface on which the coin lands, and
the state of the gravitational field that depends on the current
position of Jupiter with respect to our position on Earth. Such
unknown variables are present in all studies including our toy
example (success probability of a drug).

It should be emphasized that the possible distributions are not
equally probable. Before we carry out the study or see the results
we have a good deal of knowledge about the results that could be
expected. We always have a good deal of such knowledge even for a
study never done before. In our toy example we would not expect
a distribution for n successes in 10 trials that would assign high
probabilities to prime numbers (1, 2, 3, 5, 7) and low probabilities
toothern’s (0, 4, 6, 8, 9, 10). Such prior knowledge is a critical part
of inference. The example just given is extreme, but most scientists
are familiar with the importance of priors through interaction with
their new graduate students: A student reports ‘strange’ results
from a new study, results claimed to be accurate because they
have been checked for errors in the program and analysis. The
scientist nonetheless ‘knows’ the results are almost certainly in
error. Subsequent investigation almost always reveals this to be
the case. Even though the study may be new, the scientist’s prior
knowledge allows generally accurate assessment of the likelihood
of error.

Thus the prior probabilities we assign to the possible data
distributions are based on our prior knowledge before taking the

1 Equal probabilities of data outcomes should not be confused with uniform
probabilities of model instances (model instances are discussed shortly). If the
various p(s) values were equally likely then each would predict an equally likely
binomial data distribution, and none would predict a uniform data distribution.
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