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a b s t r a c t

Our original article provided a relatively detailed summary of Harold Jeffreys’s philosophy on statistical
hypothesis testing. In response, Robert (2016) maintains that Bayes factors have a number of serious
shortcomings. These shortcomings, Robert argues, may be addressed by an alternative approach that
conceptualizes model selection as parameter estimation in a mixture model. In a second comment,
Chandramouli and Shiffrin (2016) seek to extend Jeffreys’s framework by also taking into consideration
data distributions that do not originate from either of the models under test. In this rejoinder we argue
that Robert’s (2016) alternative view on testing has more in common with Jeffreys’s Bayes factor than
he suggests, as they share the same ‘‘shortcomings’’. On the other hand, we show that the proposition
of Chandramouli and Shiffrin (2016) to extend the Bayes factor is in fact further removed from Jeffreys’s
view on testing than the authors suggest. By elaborating on these points, we hope to clarify our case for
Jeffreys’s Bayes factors.

© 2016 Elsevier Inc. All rights reserved.

In our original article (Ly, Verhagen, & Wagenmakers, 2016)
we outlined how Harold Jeffreys constructed his hypothesis tests.
Jeffreys’s tests contrast a precise, point-null hypothesis M0 versus
a more general alternative hypothesis M1. Here the point-null
hypothesis represents a general law, an invariance, or a categorical
causal claim (e.g., ‘‘apple trees always bear apples’’; ‘‘people cannot
look into the future’’; ‘‘Alzheimer’s disease is caused by a fungal
infection of the central nervous system’’), whereas the alternative
hypothesis relaxes that law. Jeffreys’s tests require a thoughtful
specification of the prior distribution for the parameter of interest,
and much of Jeffreys’s work was concerned with providing good
default specifications—‘‘good’’ in the sense that they adhere to
general common-sense desiderata (e.g., Bayarri, Berger, Forte, &
García-Donato, 2012). We are pleased that our summary attracted
two comments by renowned researchers; below we respond to
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their ideas in a way that we hope is consistent with the overall
philosophy of Harold Jeffreys himself.

1. Rejoinder to Robert

In general, Robert’s (2016) comments highlight the inevitable
subtleties in constructing a Bayes factor. His alternative mixture
model procedure is practical and may be immensely valuable for
specific situations (i.e., hierarchical models) that are common in
psychological research. Nevertheless, we believe Robert’s sugges-
tion about the demise of the Bayes factor to be an overstatement.

1.1. Robert’s critique on the Bayes factor

Our understanding of Jeffreys’s method is partly based on the
work by Robert and colleagues (2009), and it should, therefore,
not come as a surprise that Robert’s view and ours overlap to a
considerable degree. Robert’s arguments for dismissing the Bayes
factor can be grouped in terms of (1) its usage in making decisions
and (2) the care that needs to be taken in choosing the priors.
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1.1.1. First critique: the distinction between inference and decision
making

We share Robert’s discontent with the statistical practice that
emphasizes all-or-none decisions at some arbitrary threshold, and
we agree that scientific learning should instead be guided by a
continuous measure of evidence. In the process of eviscerating p-
value null hypothesis tests, Rozeboom (1960, pp. 422–423) already
expressed a similar sentiment:

‘‘The null-hypothesis significance test treats ‘acceptance’ or
‘rejection’ of a hypothesis as though these were decisions
one makes. But a hypothesis is not something, like a piece
of pie offered for dessert, which can be accepted or rejected
by a voluntary physical action. Acceptance or rejection of a
hypothesis is a cognitive process, a degree of believing or
disbelieving which, if rational, is not a matter of choice but
determined solely by how likely it is, given the evidence, that
the hypothesis is true’’.

Our favorite continuous measure of evidence is of course a Bayes
factor constructed from a pair of priors selected according to
Jeffreys’s desiderata, or a Jeffreys’s Bayes factor in short. It is
important to note that this measure provides only the first of three
Bayesian ingredients needed for decision making. The other two
ingredients are the prior model probabilities (which, combined
with the Bayes factor, yield posterior model probabilities) and
the specification of a loss function (or equivalently, a utility
function; Berger, 1985, Lindley, 1977, and Robert, 2007).

For instance, consider a Bayes factor of BF10(d) = 4.6 for the
observed data d. This Bayes factor can be converted to a posterior
model probability of P(M0 | d) = 0.17 when we set P(M0) =

P(M1) = 1/2 (Ly et al., 2016). One possible subsequent deci-
sion rule is then to accept P(M1 | d) because it has the highest
posterior model probability. We did not intend to suggest such a
procedure, as the decision is clearly sensitive to the prior model
probabilities. Furthermore, we do not recommend uniform prior
model probabilities regardless of scientific context. In fact, when
decision making is desired, the assignment of prior model proba-
bilities is left to the substantive researcher. Such flexibility in as-
signment introduces subjectivity, and this may be seen either as a
disadvantage or as an advantage. At any rate, prior model prob-
abilities can be used to formalize the adage that ‘‘extraordinary
claims require extraordinary evidence’’ (e.g., Wagenmakers, Wet-
zels, Borsboom, & van der Maas, 2011). Moreover, the prior model
probabilities can be used to address the problem of multiplic-
ity (e.g., Jeffreys, 1961; Scott & Berger, 2010; Stephens & Balding,
2009). A similar argument applies to utility functions: these may
be subjective and hard to elicit, but such difficulties do not sanc-
tion the practice of ignoring utility functions altogether, at least
not when the purpose is to make decisions.

Thus, Robert worries that computation of Bayes factors may
tempt users to make all-or-none decisions while disregarding
prior model probabilities or loss functions. We agree with Robert
that there is a considerable difference between inference and
decision making, and that scientific learning should be guided by
a continuous measure of evidence that incorporates what we have
learned from the observed data. The Bayes factor is such ameasure.

1.1.2. Second critique: the Jeffreys–Lindley–Bartlett paradox
We suspect that the Jeffreys–Lindley–Bartlett (henceforth JLB)

paradox is central to Robert’s (1993; 2014) dismissal of the Bayes
factor and it is the main motivation for the development of the
mixturemodel alternative.We take a closer look at the JLB paradox
and discuss two consequences foreseen by Jeffreys, who was
keenly aware of the ‘‘paradox’’ from the very beginning (Etz &
Wagenmakers, 2015).

First, the JLB paradox implies that we cannot use improper
priors to construct a Bayes factor. For instance, to estimateµwithin
the normal model M1 : X ∼ N (µ, 1), we typically employ
Jeffreys’s (1946) prior µ ∝ 1. The reason to do so stems from
the fact that Jeffreys’s prior is translation-invariant, leading to a
posterior that is independent on how researchers parameterize
the problem (Ly, Marsman, Verhagen, Grasman, & Wagenmakers,
2015). The JLB paradox implies that we cannot use this same
(estimation) prior on the test-relevant parameter for a Bayesian
test. More specifically, when we pit the aforementioned model
M1 against the null model M0 : X ∼ N (0, 1) the improper
prior π1(µ) ∝ 1 then becomes useless. To see this we consider
the Jeffreys’s prior as the limit of proper priors µ ∼ N (0, τ 2)
with τ tending to infinity. The Bayes factor for the observed data
d = (n, x̄) is then given by
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regardless of the fixed sample size n and the observed sample
mean x̄. As such, the Bayes factor constructed from the improper
Jeffreys’s prior will always favor the null model and this also holds
for other improper priors. Moreover, Eq. (2) shows that for fixed
data d = (n, x̄) and a Bayes factor constructed from a normal prior
with hyperparameter τ we can obtain a Bayes factor in favor of
the null hypothesis of arbitrary size (i.e., B̃F10 ; τ (d) < 1) simply by
taking τ large enough.

Hence, the JLB paradox effectively implies that a testing
problem should be treated differently from one that is concerned
with estimation. As such, when π1 is interpreted as prior belief
about the parameters θ1, in the example above θ1 = µ, one’s
belief about the parameter then changes depending on whether
one is concerned with testing or estimating. More generally,
this difference is due to the fact that estimation is typically a
within-model affair. Recall that a model Mi specifies a relationship
fi(d | θi) that defines which parameters θi are relevant in the data
generating process of the data d. Hence, the function fi gives the
(only) context in which the parameters θi can be perceived.

In essence, the fi justifies that it is meaningful to calculate a
posterior distribution for the parameter. To underline this point
we add subscripts to the parameters indicatingmodelmembership
in the next example, by taking θ0 = σ0 and θ1 = (µ1, σ1)
for f0 and f1 both normals. For example, when we assume that
M0 : X ∼ N (0, σ 2

0 ) only a posterior for the standard deviation
σ0 is worthwhile to be pursued, as the posterior for the population
mean remains zero, regardless of the data.WithinM0, the Jeffreys’s
prior for σ0 is given by π0(σ0) ∝ σ−1

0 , which can be updated
to a posterior π0(σ0 | d). On the other hand, under M1 : X ∼

N (µ1, σ
2
1 )we are dealing with two parameters of interest. Within

M1, the Jeffreys’s prior forµ1 isπ(µ1) ∝ 1, for σ1 isπ1(σ1) ∝ 1/σ1
and we take π1(µ1, σ1) = π1(µ1)π1(σ1). These priors can be
updated to posteriors π1(µ1 | d) and π1(σ1 | d). Even though the
two priors π0(σ0) and π1(σ1) have the same form, they do not
lead to the same posterior. In fact, due to the presence of µ1 as
a parameter, the posterior mean of π1(σ1 | d) within M1 will be
smaller or equal to the posterior mean of π0(σ0 | d) within M0.
Thus, when we are interested in the standard error σi, it matters
whether we believe that M0 holds true or whether the population
mean µ1 plays a role in the data generating process as specified
by f1. The Bayes factor helps us distinguish which of the two
models is better suited to the data and which posterior for σi we
should report. Hence, testing is a between-model matter. Jeffreys
himself was very clear about the distinction between estimation
and testing:
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