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• Use odds of a correct rejection of the null hypothesis to incorrect rejection.
• Pre-experimentally, these odds are the power divided by the Type I error.
• Post-experimentally, these odds are the Bayes factor.
• The Bayes factor is shown to be a fully frequentist measure of evidence.
• A useful bound on the Bayes factor is given which depends only on the p-value.
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a b s t r a c t

Much of science is (rightly or wrongly) driven by hypothesis testing. Even in situations where the hy-
pothesis testing paradigm is correct, the common practice of basing inferences solely on p-values has
been under intense criticism for over 50 years. We propose, as an alternative, the use of the odds of a
correct rejection of the null hypothesis to incorrect rejection. Both pre-experimental versions (involving
the power and Type I error) and post-experimental versions (depending on the actual data) are consid-
ered. Implementations are provided that range fromdepending only on the p-value to consideration of full
Bayesian analysis. A surprise is that all implementations – even the full Bayesian analysis – have complete
frequentist justification. Versions of our proposal can be implemented that require only minor modifica-
tions to existing practices yet overcome some of their most severe shortcomings.

© 2016 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent years, many sciences – including experimental
psychology – have been embarrassed by a growing number of re-
ports that many findings do not replicate. While a variety of fac-
tors contribute to this state of affairs, a major part of the problem
is that conventional statistical methods, when applied to standard
research designs in psychology and many other sciences, are too

✩ Authors are listed alphabetically. We were greatly saddened by the death of
Susie Bayarri during the preparation of this paper.
∗ Corresponding author.

E-mail addresses: daniel.benjamin@gmail.com (D.J. Benjamin),
berger@stat.duke.edu (J.O. Berger), tsellke@purdue.edu (T.M. Sellke).
Ď Deceased author.

likely to reject the null hypothesis and therefore generate an un-
intentionally high rate of false positives. A number of alternative
statistical methods have been proposed, including several in this
special issue, and we are sympathetic to many of these propos-
als. In particular we are highly sympathetic to efforts to wean the
scientific community away from an over-reliance on hypothesis
testing, with utilization of often-more-relevant estimation and
prediction techniques.

Our goal in this paper is more modest in scope: we propose
a range of modifications – several relatively minor – to existing
statistical practice in hypothesis testing that we believe would
immediately fix some of the most severe shortcomings of cur-
rent methodology. Theminor modifications would not require any
changes in the statistical tests that are commonly used, and would
rely only on the most basic statistical concepts and tools, such
as significance thresholds, p-values, and statistical power. With
p-values and power calculations in hand (obtained from standard
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software in the usual way), the additional calculations we recom-
mend can be carried out with a calculator.

In developing and justifying these simple modifications of
standard methods, we also discuss additional tools that are
available from Bayesian statistics. While these can provide
considerable additional benefit in a number of settings, significant
improvements in the testing paradigm can be made even without
them.

We study the standard setting of precise hypothesis testing.1
We can observe data x from the density f (x | θ). We consider
testing

H0 : θ = θ0 versus H1 : θ ≠ θ0. (1)

Our proposed approach to hypothesis testing is based on consid-
eration of the odds of correct rejection of H0 to incorrect rejection.
This ‘rejection odds’ approach has a dual frequentist/Bayesian in-
terpretation, and it addresses four acknowledged problems with
common practices of statistical testing:

1. Failure to incorporate considerations of power into the
interpretation of the evidence.

2. Failure to incorporate considerations of prior probability into
the design of the experiment.

3. Temptation to misinterpret p-values in ways that lead to
overstating the evidence against the null hypothesis and in
favor of the alternative hypothesis.

4. Having optional stopping present in the design or running of the
experiment, but ignoring the stopping rule in the analysis.

There are a host of other problems involving testing, such as
the fact that the size of an effect is often much more important
thanwhether an effect exists, but herewe only focus on the testing
problem itself. Our proposal – developed throughout the paper
and summarized in the conclusion – is that researchers should
report what we call the ‘pre-experimental rejection ratio’ when
presenting their experimental design, and researchers should
report what we call the ‘post-experimental rejection ratio’ (or
Bayes factor) when presenting their experimental results.

In Section 2,we take a pre-experimental perspective: for a given
anticipated effect size and sample size, we discuss the evidentiary
impact of statistical significance, and we consider the problem of
choosing the significance threshold (the region of results that will
lead us to reject H0). The (pre-experimental) ‘rejection ratio’ Rpre,
the ratio of statistical power to significance threshold (i.e., the ratio
of the probability of rejecting under H1 and H0, respectively), is
shown to capture the strength of evidence in the experiment for
H1 over H0; its use addresses Problem #1 above.

How much a researcher should believe in H1 over H0 depends
not only on the rejection ratio but also on the prior odds, the
relative prior probability of H1 to H0. The ‘pre-experimental
rejection odds,’ which is the overall odds in favor of H1 implied by
rejectingH0, is the product of the rejection ratio and the prior odds.
When the prior odds in favor ofH1 are low, the rejection ratio need

1 By precise hypothesis testing, we mean that H0 is a lower dimensional subspace
of H1 , as in (1). In particular, the major problemwith p-values that is highlighted in
this paper is muted if the hypotheses are, say, H0 : θ < 0 versus H1 : θ > 0. As
an example, suppose θ denotes the difference in mean treatment effects for cancer
treatments A and B:

• Scenario 1: Treatment A= standard chemotherapy and Treatment B= standard
chemotherapy + steroids. This is a scenario of precise hypothesis testing,
because steroids could be essentially ineffective against cancer, so that θ could
quite plausibly be essentially zero.

• Scenario 2: Treatment A = standard chemotherapy and Treatment B = a new
radiation therapy. In this case there is no reason to think that θ could be zero,
and it would be more appropriate to test H0 : θ < 0 versus H1 : θ > 0.

See Berger and Mortera (1999) for discussion of these issues.

to be greater in order for the experiment to be equally convincing.
This line of reasoning, which addresses Problem #2, implies that
researchers should adopt more stringent significance thresholds
(and generally use larger sample sizes) when demonstrating
surprising, counterintuitive effects. The logic underlying the pre-
experimental odds suggests that the standard approach in many
sciences (including experimental psychology) – accepting H1
whenever H0 is rejected at a conventional 0.05 significance
threshold – can lead to especially misleading conclusions when
power is low or the prior odds is low.

In Section 3, we turn to a post-experimental perspective: once
the experimental analysis is completed, how strong is the evidence
implied by the observed data? The analog of the pre-experimental
odds is the ‘post-experimental odds’: the prior odds times the
Bayes factor. The Bayes factor is the ratio of the likelihood of the
observed data under H1 to its likelihood under H0; for consistency
in notation (and because of a surprising frequentist interpretation
that is observed for this ratio), we will often refer to the Bayes
factor as the ‘post-experimental rejection ratio,’ Rpost .

Common misinterpretations of the observed p-value (Problem
#3) are that it somehow reflects the error probability in rejecting
H0 (see Berger, 2003; Berger, Brown, & Wolpert, 1994) or the
related notion that it reflects the likelihood of the observed data
under H0. Both are very wrong. For example, it is sometimes
incorrectly said that p = 0.05 means that there was only a 5%
chance of observing the data under H0. (The correct statement is
that p = 0.05 means that there was only a 5% chance of observing
a test statistic as extreme or more extreme as its observed value
underH0 – but this correct statement is not very useful becausewe
want to know how strong the evidence is, given that we actually
observed the value of the test statistic that we did.) Given this
misinterpretation, many researchers dramatically overestimate
the strength of the experimental evidence for H1 provided by a p-
value. The Bayes factor has a straightforward interpretation as the
strength of the evidence in favor of H1 relative to H0, and thus its
use can avoid themisinterpretations that arise from reliance on the
p-value.

The Bayes factor approach has been resisted by many scientists
because of two perceived obstacles. First, determination of Bayes
factors can be difficult. Second, many are uneasy about the
subjective components of Bayesian inference, and view the familiar
frequentist justification of inference to be much more comforting.
The first issue is addressed in Section 3.2, where we discuss the
‘Bayes factor bound’ 1/[−ep log p] (from Sellke, Bayarri, & Berger,
2001 andVovk, 1993). This bound is the largest Bayes factor in favor
of H1 that is possible (under reasonable assumptions). The Bayes
factor bound can thus be interpreted as a best-case scenario for
the strength of the evidence in favor of H1 that can arise from a
given p-value. Even though it favors H1 amongst all (reasonable)
Bayesian procedures, it leads to far more conservative conclusions
than the usual misinterpretation of p-values; for example, a
p-value of 0.05 only represents at most 2.5 : 1 evidence in favor
of H1. The ‘post-experimental odds bound’ can then be calculated
as the Bayes factor bound times the prior odds.

In Section 3.3, we address the frequentist concerns about the
Bayes factor. In fact, we show that in our setting, using the Bayes
factor is actually a fully frequentist procedure – and, indeed, we
argue that it is actually a much better frequentist procedure than
that based on the p-value or on the pre-experimental rejection
ratio. Our result that the Bayes factor has a frequentist justification
is novel to this paper, and it is surprising because the Bayes factor
depends on the prior distribution for the effect size under H1.
We point out the resolution to this apparent puzzle: the prior
distribution’s role is to prioritize where to maximize power, while
the procedure always maintains frequentist error control for the
rejection ratio that is analogous to Type I frequentist error control.
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