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h i g h l i g h t s

• Classical error probabilities are investigated for default Bayes factors.
• The type I and type II error probabilities may highly differ in certain situations.
• To avoid this asymmetry in information, default Bayes factors can be tuned.
• The tuned Bayes factors remain consistent.
• The resulting error probabilities are approximately equal and smaller on average.
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a b s t r a c t

This paper investigates the classical type I and type II error probabilities of default Bayes factors for a
Bayesian t test. Default Bayes factors quantify the relative evidence between the null hypothesis and
the unrestricted alternative hypothesis without needing to specify prior distributions for the unknown
parameters based on one’s prior beliefs. It is shown that in most typical situations in psychological
research (when either observing no, small, medium or large effects) default Bayes factors are asymmetric
in information, i.e., they result in unequal error probabilities. The tendency to either prefer the
null hypothesis or the alternative hypothesis varies for different default Bayes factors. Although this
asymmetry in information is a natural property of a Bayes factor, severe cases of asymmetry may be
undesirable in a default setting because the underlying default priors are not a translation of one’s prior
beliefs. A calibration scheme is presented to make a default Bayes factor symmetric in information under
certain conditions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We shall focus on the well-known t test of an effect in a nor-
mally distributed population with unknown variance, i.e., xi ∼

N(θ, σ 2), for i = 1, . . . , n, where θ denotes the population effect
and σ 2denotes the population variance. We will test the null hy-
pothesis, H0 : θ = 0, which assumes that the population effect
equals zero against the alternative hypothesis, H1 : θ ≠ 0, which
assumes that the population effect is unequal to zero. In a Bayesian
framework, we have to specify prior distributions of the free pa-
rameters under both hypotheses. These priors reflect which values
are assumed to be most likely for the free parameters before ob-
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serving the data. Therefore, a prior must be specified for the vari-
ance under H0, denoted by π0(σ

2), and a joint prior must be speci-
fied for the effect and the variance underH1, denoted byπ1(θ, σ 2).
A Bayesian hypothesis test can then be formulated as

H0 : θ = 0, π0(σ
2) versus H1 : π1(θ, σ 2). (1)

Note that under H0, the restriction θ = 0 can also be viewed as a
prior distribution with point mass at zero.

A natural way to perform a Bayesian hypothesis test is using the
Bayes factor. The Bayes factor is defined as the ratio of themarginal
likelihoods under H0 and H1, i.e.,

B01 =
m0(x)
m1(x)

. (2)

The marginal likelihood, mt(x) for t = 0, 1, is the probability
of observing the data x under Ht given the prior πt . Thus,
the Bayes factor B01 quantifies how much more likely the data
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were generated under the null hypothesis H0 with prior π0
in comparison to the alternative hypothesis H1 with prior π1.
Therefore, the Bayes factor is typically interpreted as a relative
measure of evidence in the data between two hypotheses. If B01
is greater than, equal to, or smaller than 1, this implies that there
is more, equal, or less evidence for H0 relative to H1, respectively.
For example, if B01 = 10 this implies that the data were 10 times
more likely to come from H0 than from H1, which clearly implies
evidence in favor of H0 against H1.

Although type I and type II error probabilities, i.e., the proba-
bility of incorrectly selecting H1 while H0 is true and the proba-
bility of incorrectly selecting H0 while H1 is true, respectively, are
fundamental elements in classical hypothesis testing, classical er-
ror probabilities are often not of focal interest to Bayesians. One of
the reasons is that we do not have to make a dichotomous deci-
sion when interpreting Bayes factors. For example, when observ-
ing B01 = 10, a researcher can judge for himor herselfwhether this
is ‘positive’ or ‘strong’ support for H0 against H1. Thus, we do not
need cut-off values as in classical hypothesis testing where we de-
cide to reject or not rejectH0 againstH1 depending onwhether the
p value is smaller or larger than a prespecified significance level α.
Suggestions have beenmade how to qualify Bayes factors (Jeffreys,
1961; Kass & Raftery, 1995), e.g., a Bayes factor B01 between 3 and
20 should be interpreted as ‘positive’ evidence for H0 against H1.
These suggestions however should not be used as strict rules but
more as rough guidelines when interpreting Bayes factors.

Despite the fact that we do not need tomake a dichotomous de-
cision in Bayesian hypothesis testing, error probabilities do play a
central role in hypothesis testing using the Bayes factor. We shall
make this more explicit using the following calibration scheme.
First, we generate a hypothesis based on equal prior probabilities,
i.e., P(H0) = P(H1) = 0.5. Second, parameters are generated based
on the prior density πt under the hypothesis Ht that is generated
in the first step, for t = 0 or 1. Third, data is generated with sam-
ple size n according to the normal distribution N(θ, σ 2) where θ
and σ 2 are taken from the second step. The Bayes factor B01 is then
computed for these data. If we then select H0 if B01 > 1 and select
H1 if B01 < 1,wewouldminimize the sumof the type I and the type
II error probabilities on average (e.g., Berger, 1985). Thus, in addi-
tion to the intuitive interpretation of the Bayes factor as the rela-
tive evidence between two hypotheses, testing hypotheses using
the Bayes factor also satisfies an important frequentist argument.

Although this decision rule minimizes the average sum of
the error probabilities, the separate error probabilities are not
minimized. Therefore, the unknown type I error probability may
be very different from the unknown type II error probability, i.e.,
p0 = P(B01 < 1|H0) ≠ P(B01 > 1|H1) = p1. If this is the case, the
Bayes factor has a tendency to either selectH0 orH1. We shall refer
to this as asymmetry in information.

Garcia-Donato and Chen (2005) proposed a correction to the
decision rule to ensure that the error probabilities are equal. They
proposed to select H0 if B01 > c and select H1 if B01 < c , where the
value c > 0 is calibrated such that P(B01 < c|H0) = P(B01 > c|H1).
Despite the intuitive appeal of this decision rule from a frequentist
perspective, there is no Bayesian justification for this method. The
reason is that the asymmetry in information in the Bayes factor
comes naturally from the chosen priors under H0 and H1. It may
be that it is easier to generate data under the prior under the null
hypothesis, π0, that is consistent with data that is generated under
H1 than to obtain data that is generated under the prior under the
alternative hypothesis, π1, that is consistent with data generated
under H0. If this would be the case, the Bayes factor does exactly
what it is supposed to do: it would selectH1 more often ifH0 would
be true than it would select H0 if H1 would be true. Consequently,
the type I error probability would be larger than the type II error
probability. If the priors underH0 andH1 are carefully chosen based

on the prior beliefs of the researcher, asymmetry in information
is a natural property of the Bayes factor. Therefore it seems more
reasonable to select either H0 or H1 depending on whether B01 is
larger or smaller than 1, respectively, instead of comparing the
observed Bayes factor with the observed c.

In this paper we focus on Bayesian hypothesis testing using
so-called default Bayes factors. We shall use the term default
Bayes factor when a prior is used that is not directly related
to the substantive expectations of the researcher. Default priors
typically contain little information and have distributional forms
that ensure that the Bayes factor is relatively easy to compute. A
potential issue with default Bayes factors lies in its interpretation.
The potential issue is that the outcome of a default Bayes factor
is a default quantification of the relative evidence between two
hypotheses. This default outcome may be very different than the
subjective relative evidence in the data between the hypotheses
if priors were used that are based on the researcher’s substantive
beliefs. For example a popular default prior is to set a Cauchy
prior for the standardized effect under H1 centered around 0
with scale 1 (Rouder, Speckman, Sun, Morey, & Iverson, 2009),
and set noninformative improper Jeffreys priors for the variances
under both hypotheses. This prior has good theoretical properties.
For example, it avoids the information paradox, see Liang, Paulo,
Molina, Clyde, and Berger (2008). This Cauchy prior however
implies that we expect that there is 50% chance to find an absolute
effect that is larger than 1 (i.e., an effect that is larger than 1
or smaller than −1) before observing the data. In psychological
research however we hardly ever observe absolute effects larger
than 1, and therefore, it is not realistic that the effect follows
this Cauchy distribution if H1 would be true. Consequently, the
relative evidence as quantified by the default Bayes factor based
on this Cauchy prior may have been very different from the Bayes
factor that would have been obtained when the researcher would
have carefully formulated a prior based on external substantive
knowledge.

In this paperwe investigate the error probabilities of commonly
used default priors in typical situations in psychological research
where the effect is either zero, small, medium, or large (corre-
sponding to standardized effects of 0, 0.2, 0.5, or 0.8 according to
Cohen, 1992) while considering different sample sizes of n = 20,
50, and 100. Note that error probabilities for larger samples are not
very interesting because as the sample size grows to infinity the
error probabilities go to zero. In the case of limited data, which is
typical in psychological research, understanding the (classical) er-
ror probabilities is useful because of the following three reasons.

First, default Bayes factors are based on default priors which
typically do not reflect the prior beliefs of a researcher. For
this reason it is useful to know whether a default Bayes factor
has a tendency to either select H0 or H1 in standard situations
encountered in psychological research because there is no reason
to either prefer H0 or H1 more than the other from a subjective
point of view because the priors are not based on subjective prior
beliefs.

Second, as was mentioned above Bayes factors minimize the
sum of the error probabilities when generating data under the
respective models and priors. Default Bayes factors are typically
not based on proper priors from which we can sample. For
example, the priors of the nuisance parameters can be improper
(such as in the Cauchy prior approach) or the priors are based
on the observed data (such as in the intrinsic Bayes factor Berger
& Pericchi, 1996 or the fractional Bayes factor O’Hagan, 1995).
Thereforewedonot knowunderwhich conditions (priors) the sum
of the error probabilities is minimized when using default Bayes
factors.

Third, from the error probabilities we will learn which of the
two models (i.e., the null or alternative) is best in predicting data
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