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• We review an approximation method for Bayesian analysis of data from ANOVA designs.
• We derive the correct value for number of observations in the repeated-measures case.
• We derive a closed-form solution for posterior distributions for this approximation.
• We compare this approximation method to another Bayesian method and to NHST.
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a b s t r a c t

We present a mathematical derivation that establishes the validity of a proposed adaptation to repeated-
measures designs of Wagenmakers’ (2007) Bayesian information criterion (BIC) method for estimating
Bayes factors. We also introduce an improved definition of the penalty in this BIC approximation
that accommodates the repeated-measures correlation through an effective sample size based on the
Fisher Information. Monte Carlo simulations of repeated-measures data were used to compare the BIC
method to two Bayesian procedures for analysis of variance (ANOVA) designs and to the standard null-
hypothesis significance testing (NHST) approach. When no effects of the independent variable were
present in the populations and a reasonable sample size was used, the Bayesian methods consistently
yielded posterior probabilities clearly favoring the null model. We discuss two different approaches
to comparing the outcome of the Bayesian analyses with NHST results when an effect is present. In
general, a direct comparison between NHST p values and Bayesian posterior probabilities indicates that
the latter is somewhat conservative when effect size is small. We also derive a closed-form expression
for approximating the posterior probability distributions for condition means in one-factor repeated-
measures designs and present an R routine for computing these distributions and the posterior probability
of H0 that requires as input nothing more than values from a standard ANOVA.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A substantial change in how experimental psychologists
and cognitive scientists statistically analyze their data and test
theoretical propositions is currently underway. One officially sanc-
tioned change is reliance on estimation methods such as confi-
dence intervals for effect sizes (Cumming, 2014), which has been
formally adopted by a highly influential journal, Psychological Sci-
ence. Another important alternative that is gaining traction is
the Bayesian approach to model comparison and estimation (e.g.,
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Kruschke, 2011, 2013; Rouder, Morey, Speckman, & Province,
2012; Schoot et al., 2014 andWagenmakers, 2007). There are other
model comparison approaches that have been advocated as well,
such as likelihood ratios with a correction for number of free pa-
rameters in the models (e.g., Glover & Dixon, 2004), but Bayesian
methods appear to have achieved a greater degree of acceptance
in the behavioral sciences. Our purpose in this article is to encour-
age the use of Bayesian methods by making available a straight-
forward method of generating a Bayesian analysis for the standard
repeated-measures design commonly used in experimental psy-
chology. This method requires little more than computing the
usual analysis of variance (ANOVA). It builds on the proposal by
Wagenmakers (2007) by providing validation of an extension of
his method to repeated-measures designs.

In large measure, the call for change in how we analyze
empirical data is a response to substantial problems associated
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with the widespread use of null-hypothesis significance testing
(NHST). We begin by reviewing four of these problems and
explaining how a Bayesian approach provides powerful solutions
to them. First, the p value generated by a significance test in
NHST does not provide the information that researchers actually
seek, even though they tend to interpret the result as though it
does (Cohen, 1994). In particular, an NHST p value provides the
probability that the observed data (D), or amore extreme outcome,
would occur, under the assumption that the null hypothesis (H0) is
true. But in fact, our interest is in the viability of a hypothesis given
the observed data. That is, NHST delivers p(D|H0), but researchers
wish to draw inferences of the form p(H|D), where H is some
hypothesis. This value is readily obtained from a Bayesian analysis.

Second, researchers often fail to obtain evidence that allows re-
jection of the null hypothesis under NHSTmethods. Strictly speak-
ing, when this happens no strong conclusions can be drawn from
the results (Wilkinson & the Task Force on Statistical Inference,
1999). Yet there are many instances in which researchers actually
expect to obtain a null result. In the context of NHST, the best one
can do in these cases is to provide a power estimate based on some
non-zero effect size. Evenwhen an acceptably high value for statis-
tical power is obtained, however, one must concede than an effect
of smaller size might exist. A great benefit of Bayesian analysis is
that it provides an estimate of how strongly the empirical results
support not only an hypothesized model that assumes an effect is
present, but also how strongly the null model or hypothesis is sup-
ported.

Third, NHST methods are susceptible to contamination by data
collection practices that may be adopted out of ignorance and
with completely innocent intent. Specifically, even with an ex-
actly true null hypothesis, a researcher who continues to collect
and analyze data as it arrives until a significant p value is ob-
tained using NHST is guaranteed to obtain a significant effect at
some point (Armitage, McPherson, & Rowe, 1969; Wagenmakers,
2007). This practice of optional stopping can substantially elevate
type I error probability in NHST. Although there is practical value
inmonitoring data as they come in to determinewhether sufficient
evidence has been obtained to allow a decision between compet-
ing hypotheses, this practice is a serious problem within the NHST
framework and highly inflates the probability of a type I error.
Bayesian inference, however, is compatible with application of the
optional stopping heuristic and will yield increasingly reliable re-
sults as more data accumulate (Berger & Berry, 1988; Kruschke,
2013; Wagenmakers, 2007). Wagenmakers provides a thorough
explanation of this issue in an online Appendix to his 2007 arti-
cle (www.ejwagenmakers.com/2007/StoppingRuleAppendix.pdf).
Essentially, if wemonitor p(H|D) for a true hypothesis, H , and stop
whenever this probability falls below some low threshold, there is
a limit on howoften this procedurewill succeed. For example, if we
monitor p(H|D) for a true hypothesis with the plan to stop collect-
ing data if that probability drops as low as 0.05, then 19 times out
of 20 we will never reach that threshold no matter how long we
keep collecting data (see also Edwards, Lindman, & Savage, 1963).

Finally, if a null hypothesis is rejected, the NHST framework of-
fers little or no guidance with respect to a specific alternative hy-
pothesis. Indeed, this is one of the motivations behind the current
movement that favors reporting of effects sizes and confidence
intervals (Cumming, 2014). This approach, however, has its own
shortcomings. One concern is that researchers well acquainted
with NHST reasoning are likely to interpret confidence intervals
(which often are conveniently defined to provide 95% confidence)
as a tool to determine statistical significance of an effect. This is
quite easy to do. For example, if an effect size is plotted with a 95%
confidence interval, whether or not the interval includes zero de-
termines whether the null hypothesis is rejected under NHST. Sec-
ond, the confidence interval provides no information about where

the probable value of a parameter (a mean or an effect size) lies
within that interval (Kruschke, 2013). That is, given a confidence
interval of 10–20, a value of 10 is just as credible as a value of
15. Finally, Morey, Rouder, Verhagen, and Wagenmakers (2014)
point out that testing a theory requires predictions aboutwhat data
should be like if the theory is true versus false, and it requires a
method for using the data to make an inference about the theory.
Estimation procedures such as classic confidence intervals are lim-
ited to only the first of these three elements, characterizing data
when the theory is true. If a theory predicts, for instance, that an
effect should be present and the estimated effect size has a confi-
dence interval that does not include zero, the researcher is likely
to conclude that the data support the theory. Morey et al. point out
that this conclusion is a logical fallacy (converse error or affirming
the consequent) and that a principledmethod for inferring support
for a theory is needed. Finally, confidence intervals are susceptible
to the same misuse as NHST with respect to optional stopping. For
example, even if the true effect size is zero, if onewere to keep sam-
pling and computing a confidence interval after each new subject
is tested, it is guaranteed that if one continues long enough, one
will obtain a confidence interval that does not include zero.

Fortunately, the Bayesian approach provides a solution to these
difficulties as well. It is not tied to an emphasis on the null hy-
pothesis, but instead provides a method for establishing the rel-
ative validity of competing hypotheses based on observed data.
In addition, Bayesian methods can generate distributions of likely
values of an estimated parameter such as an effect size, given the
observed data. Moreover, a confidence interval does not provide
a mechanism for assigning relative importance to different values
lying within the interval, whereas a posterior distribution arising
from a Bayesian analysis is more informative. The Bayesian poste-
rior density is typically not uniform, andwill bemore concentrated
in the central region of the distribution, while being sparse at the
extreme ends. In addition, the posterior density can be used to as-
sign a posterior probability to any subinterval of parameter values.

2. Practically useful Bayesian methods

A possible obstacle to widespread adoption of Bayesian analy-
ses is the potentially complicated methods that these analyses can
require. Chief among these are establishing defensible prior distri-
butions for the relevant model parameters and the computation of
Bayesian posterior distributions and posterior probabilities, which
will typically involve some form of integration requiring complex
numerical methods. A number of practical solutions to this obsta-
cle have recently been made available to general users that do not
require sophisticated knowledge of how to construct prior distri-
butions nor implementation of numerical parameter estimation
procedures.

Kruschke (2013) provided a Bayesian estimation method that
can be used in place of a t test for testing differences between two
independent samples. Thismethod generates distributions of cred-
ible values for population means and standard deviations as well
as the difference between population means. The prior distribu-
tion for population means discussed by Kruschke is intended for
general applications and so it is generated by assuming little prior
knowledge. Thus, the prior is a normal distribution with very high
variability (1000 times the observed pooled standard deviation)
and mean equal to the observed mean of the pooled data. Such a
broad prior distribution is intended to haveminimal impact on the
posterior distributions that are produced by the Bayesian analysis.
Estimation of posterior distributions proceeds using Markov chain
Monte Carlo sampling. Kruschke provides a source code for use in
the open source statistical program R. The steps required for using
this code and entering data are relatively straightforward, and the
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