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• Neurologically plausible models of choice response time are compared.
• Several model comparison metrics are evaluated.
• Discrepancies between the metrics are observed.
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a b s t r a c t

Recent advancements in Bayesian modeling have allowed for likelihood-free posterior estimation. Such
estimation techniques are crucial to the understanding of simulation-based models, whose likelihood
functions may be difficult or even impossible to derive. One particular class of simulation-based models
that have not yet benefited from the progression of Bayesian methods is the class of neurologically-
plausible models of choice response time, in particular the Leaky, Competing Accumulator (LCA) model
and the Feed-Forward Inhibition (FFI) model. These models are unique because their architecture was
designed to embody actual neuronal properties such as inhibition, leakage, and competition. Currently,
these models have not been formally compared by way of principled statistics such as the Bayes factor.
Here, we use a recently developed algorithm – the probability density approximation method – to fit
these models to empirical data consisting of a classic speed accuracy trade-off manipulation. Using
this approach, we find some discrepancies between an assortment of model fit statistics. For some
participants, one model appears to be superior when one fit statistic is used, while another appears
superior when a different statistic is used. However, for 13 of the 20 participants, one model wins by
all of the fit metrics considered. The FFI wins in 5 of these cases, while the LCA wins, often by a wide
margin, for the others.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The goals of cognitive modeling are to understand complex be-
haviors within a system of mathematically-specified mechanisms
or processes, to assess the adequacy of the model in accounting
for experimental data, and to obtain an estimate of the model pa-
rameters, which carry valuable information about how the model
captures the observed behavior for both individuals and groups.
Cognitive models are important because they provide a means
with which cognitive theories can be explicitly tested and com-
pared with one another.
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Perhaps the greatest strength ofmany cognitivemodels is para-
doxically the model’s greatest weakness. Many cognitive models
put forth sophisticated mechanisms meant to capture psycholog-
ically plausible processes. While these mechanisms are entirely
plausible, they often render the cognitive model intractable, or at
least difficult to fully analyze in a principled way such as with
Bayesian statistics. The difficulties encountered in deriving the
full likelihood function have prevented the application of fully
Bayesian analyses formany cognitivemodels, especially those that
attempt to capture neurally-plausible mechanisms.

Consider, for example, the Leaky Competing Accumulator
(LCA; Usher & McClelland, 2001) model. The LCA model was pro-
posed as a neurologically plausible model for choice response time
in a c-alternative task. The model possesses mechanisms that ex-
tend other diffusion-type models (e.g., Ratcliff, 1978) by including
leakage and competition by means of lateral inhibition. Because
the evidence accumulation process used by the LCA model was
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designed to mimic actual neuronal activation patterns, one crit-
ical assumption is that the signal propagated from one accumu-
lator to another can never be negative. This assumption can be
implemented by specifying a floor on each accumulator’s activa-
tion value, such that if the activation of an accumulator in the
model becomes negative, it is reset to zero. The LCAmodel also as-
sumes a competition among response alternatives that depends on
the current state of each of the accumulators. Together, these fea-
tures of themodel sufficiently complicate the equations describing
the joint distributions of choice and response time such that the
likelihood function for the LCAmodel has not been derived. As a re-
sult, all model evaluations to this point have been performed using
either a model simplification or least squares estimation (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Bogacz, Usher, Zhang, &
McClelland, 2007; Gao, Tortell, & McClelland, 2011; Teodorescu
& Usher, 2013; Tsetsos, Usher, & McClelland, 2011; Usher & Mc-
Clelland, 2001; van Ravenzwaaij, van der Maas, & Wagenmakers,
2012), which have been shown to produce less accurate param-
eter estimates relative to techniques such as maximum likelihood
or Bayesian estimation (e.g., Myung, 2003; Rouder, Sun, Speckman,
Lu, & Zhou, 2003; Turner, Dennis, & Van Zandt, 2013; Van Zandt,
2000).

Recent advances in likelihood-free techniques have allowed
for new insights to simulation-based cognitive models (Turner,
Dennis et al., 2013; Turner & Sederberg, 2012, 2014; Turner &
Van Zandt, 2012, 2014). In particular, the probability density ap-
proximation (PDA; Turner & Sederberg, 2014) method now allows
for fully Bayesian analyses of computational models exclusively
by way of simulation. In this article, we illustrate the impor-
tance of our method by comparing two neural network models
of choice response time that have never been compared using
Bayesian techniques due to their computational complexity: the
LCAmodel (Usher &McClelland, 2001) and the Feed-Forward Inhi-
bition (FFI; Shadlen & Newsome, 2001) model.1 Both models em-
body neurologically plausible mechanisms such as ‘‘leakage’’, or
the passive decay of evidence during a decision, and competition
among alternatives through either lateral inhibition (in the LCA
model) or feed-forward inhibition (in the FFI model). However, it
remains unclear as to which dynamical system best accounts for
empirical data, due to the limitations imposed by intractable like-
lihoods. Specifically, complexity measures that take into account
posterior uncertainty andmodel complexity have yet to be applied.
Here, we will compare the models on the basis of an approxima-
tion to theBayes factor.Webegin bydescribing in greater detail our
method for fitting the models to data. We then describe how our
posterior estimates are converted into a comparison between the
models. Finally, we compare the relative merits of the two models
by evaluating the models’ fit to the data presented in Forstmann
et al. (2011), which consisted of 20 subjects in three speed empha-
sis conditions.

2. Experiment

The data we will use to test the models were presented in
Forstmann et al. (2011), and consist of 20 subjects. The experi-
ment used a moving dots task where subjects were asked to de-
cide whether a cloud of semi-randomly moving dots appeared to
move to the left or to the right. Subjects indicated their response
by pressing one of two spatially compatible buttons with either
their left or right index finger. Before each decision trial, subjects
were instructed whether to respond quickly (the speed condition),

1 Although Ratcliff and Smith (2004) used the Bayesian information criteria to
compare many simulation-based models, they did not obtain proper Bayesian
posteriors, which is the endeavor of the current manuscript.

accurately (the accuracy condition), or at their own pace (the neu-
tral condition). Following the trial, subjects were provided feed-
back about their performance. In the speed and neutral conditions,
subjects were told that their responses were too slow whenever
they exceeded a RT of 400 and 750 ms, respectively. In the accu-
racy condition, subjects were told when their responses were in-
correct. Each subject completed 840 trials, equally distributed over
the three conditions. These data serve as a benchmark for our met-
ric comparison given that we have some experience in analyzing
them in a variety of contexts (Turner et al., 2013; Turner & Seder-
berg, 2014; Turner, Sederberg, Brown, & Steyvers, 2013).

3. Likelihood-free inference

As the reader of this special issue is no doubt aware, there are
many advantages of using Bayesian statistics in cognitive model-
ing. However, the widespread dissemination of Bayesian statis-
tics can largely be attributed to advanced statistical techniques
for approximating the posterior distribution (see, e.g., Gelman,
Carlin, Stern, & Rubin, 2004; Gilks, Best, & Tan, 1995; Gilks &
Wild, 1992; Robert & Casella, 2004; Ter Braak, 2006), rather than
evaluating it precisely. Approximating any posterior distribution
depends on efficient evaluation of two functions: (1) the prior dis-
tribution for the model parameters, and (2) the likelihood func-
tion relating themodel parameters to the observed data. For purely
statistical models, evaluating these functions is, generally speak-
ing, straightforward. However, for cognitive models who attempt
to provide mechanistic explanations for how data manifest, direct
evaluation of the likelihood function can be difficult, if not impos-
sible. We refer to these models as ‘‘simulation-based’’ to indicate
that explicit equations for the likelihood function are either (1) in-
tensely difficult to practically evaluate (e.g., Montenegro,Myung, &
Pitt, 2011; Myung, Montenegro, & Pitt, 2007; Turner, Dennis et al.,
2013), or (2) have not yet been derived (e.g., Shadlen & Newsome,
2001; Usher & McClelland, 2001). Recently, a suite of algorithms
have been developed specifically for analyzing (simulation-based)
cognitive models in a fully (hierarchical) Bayesian context (Turner
& Sederberg, 2012, 2014; Turner & Van Zandt, 2014). While com-
binations of these algorithms can be used to effectively evaluate
the joint posterior distribution, we require only one algorithm –
the probability density approximation (PDA; Turner & Sederberg,
2014) method – to evaluate the models presented in this article.

3.1. The probability density approximation method

As discussed in Turner and Sederberg (2014), the PDA method
is an alternative likelihood-free algorithm that does not require
sufficient statistics for the parameters of interest. Turner and
Sederberg demonstrated the utility of their algorithm by verifying
that it could be used to accurately estimate the posterior
distribution of the parameters of the Linear Ballistic Accumulator
(LBA; Brown & Heathcote, 2008) model, which has a tractable
likelihood function and is amenable to Bayesian estimation
(Donkin, Averell, Brown, & Heathcote, 2009; Donkin, Heathcote, &
Brown, 2009; Turner, Sederberg et al., 2013). In addition, Turner
and Sederberg showed that the PDA method could be used to
estimate the parameters of the LCA model in a fully hierarchical
Bayesian context.

Although the details of how to apply the PDAmethod to various
data types are explained in detail in Turner and Sederberg (2014),
we will reproduce the relevant details for applying the method to
data containing both discrete and continuous measures. For ease
of exposition, we consider the common case of data consisting
of one discrete measurement (e.g., choice) and one continuous
measurement (e.g., response time). For the discretemeasurements,
suppose there are C options, and for the continuousmeasurements
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