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h i g h l i g h t s

• Presents a normalized coding model of the statistics of stimulus representations.
• Normalized coding predicts a constant diffusion coefficient decision model.
• Normalized coding predicts the information capacity of visual short-term memory.
• The model reconciles previously incompatible bodies of theory and experimentation.
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a b s t r a c t

A normalized coding condition is proposed that provides a theoretical link between the Poisson shot noise
model of choice response time and a Poisson neuron model of the information capacity of visual short-
term memory (VSTM). In both models, noise in the cognitive representations of stimuli is attributed to
Poisson variability in the neural processes that encode them. In VSTM, a Poisson coding model predicts
the invariance of


i(d
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2 across displays of different sizes, as is found experimentally, but it incorrectly

predicts that the diffusion coefficient of the approximating diffusion process will decrease with its
drift rate. Normalized coding assumes that the squared magnitudes of the random perturbations to a
stimulus representation are inversely proportional to the number of Poisson neurons that represent it.
The normalized codingmodel correctly predicts both a constant diffusion coefficient and the invariance of

i(d
′

i)
2, as required by the experimental data. Normalized coding reconciles the theoretical and empirical

properties of diffusion models of decision-making and the sample-size model of VSTM.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction: the Poisson shot noise model of choice
response time

One of the theoretical goals of cognitive neuroscience is to
develop mathematical models that link behavioral and neural
levels of description. In the area of speeded decision-making,
progress towards this goal has received impetus from the
discovery that models of choice response time (RT) developed in
mathematical psychology to account for the speed and accuracy of
behavioral decisions can also characterize the time course of the
underlying neural processes. Smith and Ratcliff (2004) reviewed
recent developments in this area. The discovery of this relationship
invites the question of how the evidence accumulation processes
hypothesized to underlie decision-making in behavioral models
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can be realized computationally in the neural ensemble. The
purpose of this article is to propose a solution to one of the
theoretical problems that arise in attempting to link behavioral
and neural models. This is the problem of how the variance of
encoded stimulus representations changes with the number of
neurons recruited to represent a stimulus and how these changes
are expressed in models of choice RT. Pragmatically, the problem
is how to ensure that the properties of a neural model and a
behavioral model can be made consistent with each other.

The most influential models of choice RT are the sequential-
samplingmodels (Laming, 1968; Link, 1992; Luce, 1986; Townsend
& Ashby, 1983; Vickers, 1979). These models assume that deci-
sions are made by accumulating successive samples of noisy evi-
dence until a criterion quantity of evidence needed for a response
is obtained. The best of these models successfully account for
distributions of RT for correct responses and errors and the
associated choice probabilities in a variety of cognitive tasks
(Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004). Recently, a
number of authors have reported what appears to be the neural

http://dx.doi.org/10.1016/j.jmp.2015.03.007
0022-2496/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmp.2015.03.007
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmp.2015.03.007&domain=pdf
mailto:philipls@unimelb.edu.au
http://dx.doi.org/10.1016/j.jmp.2015.03.007


42 P.L. Smith / Journal of Mathematical Psychology 66 (2015) 41–52

signature of the evidence accumulation process in brain structures
that are active in monkeys performing saccade-to-target decision
tasks (Hanes & Schall, 1996; Ratcliff, Cherian, & Segraves, 2003;
Roitman & Shadlen, 2002). Structures in the oculomotor control
system – such as the frontal eye fields, lateral interparietal area,
and the superior colliculus – which are involved in the prepa-
ration and control of saccadic eye movements, show increasing,
response-locked patterns of neural firing during the pre-response
interval. These patterns of firing are consistentwith the interpreta-
tion that they either implement an evidence accumulation process
or read out the state of an accumulation process located elsewhere
in the brain.

Consistent with this interpretation, several authors have
shown that sequential-sampling decision models can be used
to characterize the empirically-observed relationship between
neural firing rates and the speed and accuracy of decision-making.
Ratcliff and colleagues showed that the parameters of sequential-
sampling models estimated from RT distributions and choice
probabilities of monkeys performing saccade-to-target decision
tasks predict the time course and relative firing rates in build-
up cells in the superior colliculus (Ratcliff et al., 2003, 2011;
Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves, 2007). Shadlen
and colleagues showed a similar relationship for cells in lateral
interparietal area in a global dotmotion task (Ditterich, 2006; Gold
& Shadlen, 2001). Schall and colleagues showed that the firing
rates of visual neurons in frontal eye fields can predict saccadic
decision times when the visual spike trains are used as inputs to a
sequential-sampling decision process (Purcell et al., 2010; Purcell,
Schall, Logan, & Palmeri, 2012). These demonstrations invite the
development of models in which the properties of the evidence
accumulation process are derived from the point-process statistics
of the underlying neural firing rates.

To this end, Smith (2010) and Smith and McKenzie (2011)
proposed a theoretical link between neural firing rates and
evidence accumulation via the properties of the Poisson shot noise
process. The shot noise process, which was originally proposed
as a model of electron absorption in vacuum tubes (Campbell,
1909), provides an idealized model of the flux in the postsynaptic
potential across cells in a neural population in response to a volley
of action potentials that encode stimulus information. The latter
are idealized as a (possibly time inhomogeneous) Poisson process.
In the shot noise model, discriminative information is carried by
the difference between an excitatory and inhibitory shot noise
process, which Smith called an excitatory–inhibitory shot noise pair.

The shot noise process represents the instantaneous state of
the evidence available to the decision process at a given time
during a trial. At high Poisson intensities, the shot noise process
weakly converges to anOrnstein–Uhlenbeck (OU) velocity process.
The time integral of the velocity process, which characterizes the
accumulating evidence state, is an integrated OU process, or OU
displacement process. Themacro statistics of the OU displacement
process converge to those of the Wiener, or Brownian motion,
diffusion process, which is used to model evidence accumulation
in Ratcliff’s (1978) model of decision-making. The diffusion model
has provided a successful account of speeded two-choice decisions
in a variety of experimental settings (Ratcliff & McKoon, 2008;
Ratcliff & Smith, 2004). Smith and McKenzie (2011) developed
the shot noise model in a somewhat different way, in order
to emphasize the relationship between evidence accumulation
and the statistics of recurrent loops, as proposed by Wang and
colleagues (Wang, 2002; Wong &Wang, 2006).

The theoretical principles of the shot noise model can be
contrasted with those of the recent neural accumulator model of
Zandbelt, Purcell, Palmeri, Logan, and Schall (2014). In their model,
every neuron in the population is treated as a separate evidence ac-
cumulator and the focus of their article was on how to obtain well-
behaved RT properties from a large ensemble of weakly correlated

accumulators. In the shot noise model, the ensemble statistics of
individual neurons are aggregated across the population to form a
single, diffusive accumulation process. The aim of the model was
to provide a theoretical basis for diffusive evidence accumulation,
motivated by the success of diffusion models in accounting for RT
distributions and response accuracy from a wide variety of experi-
mental paradigms (Ratcliff & Smith, 2004). The neural accumulator
model of Zandbelt et al. currently only predicts RT; it has not yet
been extended to accuracy.

The OU process is used in the shot noise model as an
intermediate step between the shot noise process and the Wiener
process, which differs from the way in which it has been used in
previous models of decision making. In the models of Busemeyer
and Townsend (1993), Diederich (1995), Smith (1995), Smith and
Ratcliff (2009), Usher and McClelland (2001), and others, an OU
velocity process was used to model accumulating evidence. To
obtain well-behaved RT distributions using the velocity process in
this way, the OU decay parameter must be comparatively small;
otherwise most of the mass of the OU stationary distribution will
fall inside the decision criteria, leading to extremely skewed RT
distributions (Ratcliff & Smith, 2004). In the shot noise model,
an OU velocity process with fast decay is instead used to model
the instantaneous evidence state and the accumulating evidence
is modeled as its time integral, which is an OU displacement
process. Themean and variance of the OU velocity process become
increasingly different from those of the Wiener process as the OU
decay parameter is increased, whereas for the OU displacement
process the converse is true: As the OU decay rate is increased, the
convergence of themean and variance of the displacement process
to those of the Wiener process is increasingly rapid. The statistics
of these various processes are discussed subsequently.

Fig. 1 depicts the properties of a Poisson shot noise pair.
Mathematically, the shot noise process is the cumulative sum
of a sequence of random shocks, or disturbances, with random
amplitudes, occurring at random interarrival times, Ti, i =

1, 2, . . . . Each shock produces a small jump of amplitude, Zi, which
then decays exponentially with rate α. The distribution of Zi need
not be specified other than to require that its first twomoments be
finite. The exponential process is not the most general shot noise
process possible (cf. Ross, 1983), but it is theoretically interesting
because of its convergence to an OU velocity process. As shown in
Fig. 1, the process has a saw-tooth appearance: When the Poisson
rate is low, the time courses of the shocks produced by the arriving
Poisson events are distinct, but as the rate increases, the shocks
begin to cumulate, giving the saw-tooth profile shown in Fig. 1.

Mathematically, the value of the shot noise process, Xt , at time
t is a random sum,

Xt =

Nt
i=0

1{t≥Ti}Zie
−α(t−Ti), (1)

where the process Nt , defined as

Nt =


i

I{Ti≤t},

counts the number of Poisson events in the interval [0, t], and
where I{.} denotes the indicator function of the subscripted
event. In the model proposed by Smith (2010), the instantaneous
evidence state is described by the difference between an excitatory
process, X+

t , and an inhibitory process, X−

t ,

Xt = X+

t − X−

t . (2)

The resulting process, which is a shot noise pair, is the somewhat
complex-looking process depicted on the right of Fig. 1.

Using generating function methods, it can be shown (Smith,
2010), that the mean, variance, and covariance of the exponential
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