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h i g h l i g h t s

• A generalization of extensive structures and its representation are considered.
• A left nonnegative concatenation structure with left identity is defined.
• This structure satisfies solvability and Archimedeaness with left-concatenation.
• Two conditions make the structure into an extensive structure with identity.
• We get the weighted additive model as a representation on the extensive structure.
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a b s t r a c t

This paper generalizes extensive structures so that a weighted additive model can be obtained. A
left nonnegative concatenation structure with left identity is defined as a nonnegative concatenation
structure (Luce et al., 1990) with left identity for which the solvability and Archimedean properties
are satisfied only related to left-concatenation. This structure has two partial binary operations –
multiplication and right division – and a new partial binary operation is defined on it. Two conditions
of equivalence form are then provided to make the left nonnegative concatenation structure with left
identity into an extensive structure with identity with respect to the newly defined operation. Finally, the
weighted additive model is derived from an additive representation on the extensive structure, so that
distinctm-period and n-period (m ≠ n) temporal sequences can be compared.

© 2014 The Author. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license
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1. Introduction

Matsushita (2011) recently generalized the classical result of
Hölder (1901) in the context of groupoids (a ‘‘groupoid’’ is a
nonempty set with a binary operation), and developed an axiom
system to construct a weighted additive model. From groupoid
multiplication, let ab denote the concatenation of commodities
a, b. Then his model is of the following form:

u(ab) = αu(a) + u(b), α > 1.

The first aim of this paper is to convert his algebraic axioms into
a decision-making version so that they can be empirically tested.
Meanwhile, all axioms, including the remaining ones, are to be
rewritten under the requirement that the multiplication be gen-
eralized to a partial binary operation, that is, a generalization of
extensive structures. Although the framework for constructing the
weighted additive model is almost identical to the proof of The-
orem 4.2 (Matsushita, 2011), the addition of some mathematical
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work is needed to achieve this aim. First, two axioms A8 and A9
(Lemma 1), written in a simple form, are proposed fromwhich one
can deduce the algebraic axioms. Second, the concepts of exten-
sive ‘‘substructure’’ and ‘‘order-isomorphism’’ (Lemma 3) are in-
troduced to yield the multiplicative form αu(a) in the weighted
additive model.

We shall now consider preferences over temporal sequences
of amounts of money. Many people will probably prefer receiving
$10,000 this year and $5000 next year to receiving $5000 this
year and $10,000 next year. A major reason for this preference
is that the value of commodities decreases with the passage of
time. Utilitymodels has been already proposed to explain this kind
of preference. The simplest one is of the following form: letting
(a1, . . . , an) denote an n-period temporal sequence,

φ(a1, . . . , an) =

n
i=1

λi−1v(ai),

where φ and v are real-valued functions on the set of temporal se-
quences consisting of n commodities and on the set of single com-
modities, respectively, and λ 6 1 is a discount factor at a constant
rate.
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The axiomatization to construct this utility model was initi-
ated by Krantz, Luce, Suppes, and Tversky (1971) and Fishburn
(1970). They developed a utility model with various discount fac-
tors so as to reflect the concept for a preference for advancing the
timing of future satisfaction (i.e., impatience; Koopmans, 1960;
Koopmans, Diamond, & Williamson, 1964). Then incorporating
‘‘stationarity1’’ by Koopmans (1960), they reduced the utility
model to the above special model with a discount factor at a con-
stant rate. For this construction, Krantz et al. assumed an ‘‘addi-
tive conjoint structure’’ and Fishburn considered a finite product
of topological spaces. As such, the following problem arose: com-
parisons could be made only between temporal sequences with
the same number of periods. Further, some of their axioms are dif-
ficult to empirically test. Indeed, the n-factor independence con-
dition requires us to consider the ordering of the joint effect of
multiple factors in verifying its validity; the validity of the topo-
logical conditions (connectedness, separability) is, in itself, nearly
impossible to directly test, because it is difficult to have subjects
recognize the concept of open or closed sets in the frame of a pref-
erence structure.

Our weighted additive model (displayed in the first paragraph)
too can deal with multi-period temporal sequences. Identifying
(a1, . . . , an) with (· · · ((a1a2)a3) · · · an−1)an, from the inductive
use of the equation of the weighted additive model, we have
u[(· · · ((a1a2)a3) · · · an−1)an] =

n
i=1 αn−iu(ai). It should be noted

that this is a representation for multiplication. Since every tem-
poral sequence (consisting of any number of commodities) is
expressed as a product, this model can numerically evaluate pref-
erences between distinct m-period and n-period (m ≠ n) tem-
poral sequences. This is a great advantage of our model over the
above utilitymodel with a stationary discount factor. Furthermore,
in connection with the first aim of the paper, the axioms are to be
written as equivalences between commodities or concatenations
so that their validity can be empirically tested. Thus, the axiom-
atization of our weighted additive model offers a solution to the
problems raised above. Another marked difference between these
two models is that the weight of our model is α > 1, which may
be referred to as a markup factor at a constant rate. However, the
concepts of a discount factor and amarkup factor could be deemed
relative, because for one temporal sequence, the receipt of each
component is considered postponed or advanced depending on
whether one is regarding the oldest or the latest period as a stan-
dard; andwhether a utilitymodel has a discount factor or amarkup
factor is determined on the basis of whether one counts each pe-
riod number in the temporal sequence toward the future direction
or toward the past direction. As such, our utility model can ex-
plain a preference property, such as impatience. From the above,
the second aim of the paper is to put an interpretation on several
axioms in the context of the decision-making problems of tempo-
ral sequences.

The rest of this paper is organized as follows. Section 2 pro-
vides the axioms to define a basic structure, called left nonnega-
tive concatenation structure with left identity, the positive part of
which is a generalized concept of a PCS (Luce, Krantz, Suppes, &
Tversky, 1990) in the sense that the solvability and Archimedean
properties are satisfied only related to left-concatenation. More-
over, some properties are shown to be satisfied on the structure.
Section 3 presents two axioms of equivalence form to make every
left nonnegative concatenation structure with left identity an ex-
tensive structure with identity related to an introduced operation,
interprets the axioms in the context of temporal sequences, and
gives themain theorem for the weighted additive model. Section 4
contains several conclusions. The proofs of the lemmas, proposi-
tions, and theorem are given in Section 5.

1 Stationarity means that preferences are invariant over temporal sequences
(a1, . . . , an) under the shifts in which each component ai is advanced or postponed
by one period.

2. Basic concepts

Throughout this paper, R+

0 denotes the set of all nonnegative
real numbers. Let % be a binary relation on a nonempty set A that
is interpreted as a preference relation. As usual, ≻ denotes the
asymmetric part, ∼ the symmetric part, and -, ≺ denote reversed
relations. The binary relation% onA is aweak order if and only if it is
connected and transitive. Let · be a ‘‘partial’’ binary operation on A.
The operationmeans a function from a subset B of A×A into A. The
expression a · b is said to be defined (in A) if and only if (a, b) ∈ B.
An element e ∈ A denotes no change in the status quo with
temporal sequences. That is, it is assumed that receiving e prior to
a is no different from receiving a at present; however, ae implies
advancing the receipt of aby oneperiod, so that ae is not always∼a.

In the following conditions, all the products are always assumed
to be defined.

A1. Weak order: % is a weak order on A.
A2. Local definability: if a · b is defined, a % c, and b % d, then c · d

is defined.
A3. Monotonicity: a % b ⇔ a · x % b · x ⇔ x · a % x · b for all

a, b, x ∈ A.
A4. Left identity: e is a left identity element; that is, e · a ∼ a for all

a ∈ A.

The system ⟨A, %, ·⟩ is a concatenation structure if and only if
A1–A3 are satisfied. If, in addition, A4 holds, then ⟨A, %, ·, e⟩ is
said to be a concatenation structure with left identity. Throughout
the paper, the trivial case where A has just a single element e is
always excluded.

We now state a terminology important to this paper. An
element a of a concatenation structure A is r-nonnegative, l-
nonnegative, or nonnegative according as x · a % x, a · x % x,
or both hold for all (x, a) or (a, x) ∈ B. Similarly, r-positive, l-
positive, and positive elements can be defined by replacing % with
the strict preference relation≻. A concatenation structure is called
r-nonnegative if all of its elements are r-nonnegative, and so on.

Fundamental conditions for concatenation structures are listed
below.

A5. R-nonnegativity: whenever x · a is defined, then x · a % x.
A6. Left solvability: whenever a ≻ b, there exists x ∈ A such that

x · b is defined and a ∼ x · b.

Axiom A5 is defined as the ‘‘right sided’’ concept, whereas A6
is defined as the ‘‘left sided’’ concept. That is, r-nonnegativity
is the nonnegativity condition that is satisfied only for right-
concatenation by a. Left solvability is a generalized solvability in
the sense that only the existence of a left solution is permissible. If
a concatenation structure contains a left identity element e, then by
A3, a is l-positive (or l-nonnegative) if and only if a ≻ e (or a % e),
whereas a ≻ e is not always r-positive nor even r-nonnegative
(see Example 1). However, the following holds.

Proposition 1. Let ⟨A, %, ·, e⟩ be a concatenation structure with
left identity. If A is r-nonnegative, then a % e for all a ∈ A.

Since, in A6, x is uniquely determined up to ∼ by A3, we
write x ∼ a/b, and a/a ∼ e because a ∼ e · a. Thus a par-
tial binary operation / is defined on A, which is called a right di-
vision. Indeed, / is a function from the subset {(a, b) ∈ A ×

A |a % b, (x, b) ∈ B for some x ∈ A } into A. It may be suitable to
refer to A6 as right divisibility.

Proposition 2. Let ⟨A, %, ·, e⟩ be a concatenation structure with
left identity. If A6 holds, then for all a, b, x ∈ A, the following
properties hold:

(i) (a · b)/b ∼ a ∼ (a/b) · b whenever a · b is defined and
a % b.
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