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h i g h l i g h t s

� A semi-mechanistic model is proposed for pretreated corn stover saccharification.
� The model considers high-solid saccharification and washed or unwashed solids.
� A subset of identifiable parameters was found showing tight confidence intervals.
� Uncertainty in parameters estimates was used to predict bands for glucose yield.
� The model reliably describes the saccharification kinetics of corn stover’ glucan.
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a b s t r a c t

Uncertainty associated to the estimated values of the parameters in a model is a key piece of information
for decision makers and model users. However, this information is typically not reported or the confi-
dence intervals are too large to be useful. A semi-mechanistic model for the enzymatic saccharification
of dilute acid pretreated corn stover is proposed in this work, the model is a modification of an existing
one providing a statistically significant improved fit towards a set of experimental data that includes
varying initial solid loadings (10–25% w/w) and the use of the pretreatment liquor and washed solids
with or without supplementation of key inhibitors. A subset of 8 out of 17 parameters was identified,
showing sufficiently tight confidence intervals to be used in uncertainty propagation and model analysis,
without requiring interval truncation via expert judgment.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The cell walls of plants comprising lignocellulosic biomass are a
complex and heterogeneous matrix composed primarily of the bio-
polymers: cellulose, hemicelluloses, and lignin (Chundawat et al.,

2011). These cell wall biopolymers offer the potential as feedstocks
for the sustainable production of renewable fuels, chemicals, and
biomaterials with a diverse range of biochemical, thermochemical,
and catalytic routes. One promising conversion route involves the
deconstruction of the cell wall polysaccharides into fermentable
monosaccharides by a pretreatment and polysaccharide hydroly-
sis, followed by biological conversion of sugars to fuels such as eth-
anol (Galbe and Zacchi, 2012). Cellulose hydrolysis of pretreated
lignocellulose can be performed using a cocktail of cooperative cel-
lulase enzymes containing glycosyl hydrolases (Lynd et al., 2002)
as well as a recently recognized class of lytic polysaccharide
monooxygenases (Harris et al, 2014) that are responsible for
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depolymerizing cellulose. Some hemicellulose-retaining pretreat-
ments also require hemicellulose-depolymerizing enzymes to
maximize cellulose hydrolysis (Decker et al., 2008). The process
is complex due to the number of enzymes that take part and the
fact that reactions take place on the surface of a water-insoluble
crystalline polymer (i.e. cellulose hydrolysis) as well as reactions
in the liquid phase (i.e. cellobiose hydrolysis).

An extensive collection of kinetic models of cellulose enzymatic
hydrolysis for model cellulosic substrates and pretreated biomass
can be found in literature and have been recently reviewed
(Bansal et al., 2009). Models range from simple empirical or black-
box models to complex mechanistic models, which attempt to use
the current understanding of how the process works to derive cau-
sal hypotheses that are incorporated in the mathematical model.
While empirical models may have a small number of parameters
to adjust (although there are exceptions such as neural network
models), mechanistic models can involve a large number of param-
eters, which need to be found by fitting the model to a large number
of purposely generated experimental data (Brun et al., 2001). From a
model-based process design point of view; the use of either
empirical or mechanistic models depends on whether the user is
interested in testing conditions within the experimental data (inter-
polation), or in testing conditions that lie outside the experimental
conditions (extrapolation) where the mechanistic model provide a
rational basis for predicting the behavior of the system.

Due to the complexity of the enzymatic hydrolysis process, the
changing enzyme formulations made available by the major com-
mercial enzyme producers, as well as the strong influence that pre-
treatment and feedstock have over the outcome of enzymatic
hydrolysis, semi-mechanistic models with the smallest possible
number of parameters may be the most adequate choice from a
model-based development point of view, thereby reducing the
amount of experimental data required to estimate the parameters
values. Among the existing semi-mechanistic models, the one

developed by NREL researchers in 2004 (Kadam et al., 2004) has
been used in a number of biofuel production processes flowsheets
evaluation and alternatives comparison (Scott et al., 2013;
Morales-Rodriguez et al., 2011; Hodge et al., 2009) and it has been
subjected to an identifiability and uncertainty analysis (Sin et al.,
2010). Results indicate that only 6 out of 26 parameters are iden-
tifiable from the original data, and any attempt to identify a higher
number of parameters results in significant errors on their esti-
mates. This is evidenced by the wide confidence intervals for the
values of the parameters.

Uncertainty in parameter estimates can arise from a number of
sources, including insufficiently informative experimental data, i.e.
the model is not sensitive to some of the parameters to be esti-
mated over the experimental data set (Raue et al., 2009) and
parameters that are correlated, i.e. parameters are mathematically
related to each other through some implicit function (Li and Vu,
2013; Raue et al., 2009). Furthermore, to be used in model-based
process development, a cellulose hydrolysis kinetic model should
incorporate as many aspects controlling the process behavior as
possible. Among them, initial solids loading is a key factor since
the higher the concentration of substrate the higher the ethanol
titer in the fermentation stage, which decreases the energy needs
in the recovery stage. However, it is known that high solid loadings
affect the final glucan conversion (Wang et al., 2011; Kristensen
et al., 2009; Hodge et al., 2008). Usage of the liquor generated dur-
ing pretreatment is desirable from a technical and economical
point of view, since no capital-intensive separation equipment is
required and the sugar oligomers released during pretreatment
can be hydrolyzed by the action of enzymes in the saccharification
stage, however, enzymes are known to be inhibited by soluble
sugar monomers, dimers, and oligomers (Teugjas and Väljamäe,
2013; Qing et al., 2010), organic acids (Hodge et al., 2008), and
phenolic compounds (Tejirian and Xu, 2011) contained in the
pretreatment liquor. Despite these inherent difficulties and

Nomenclature

aiad adsorption decreasing factor (kg/g)
bi activity decreasing factor (kg/g)
CI1�a confidence interval at a significance level
COV m�m covariance matrix
E1max maximum mass of enzyme that can be adsorbed onto a

unit mass of substrate: 0.06 (g/g)
E2max maximum mass of enzyme that can be adsorbed onto a

unit mass of substrate: 0.01 (g/g)
E1B bound concentration of CBH and EG (g/kg)
E2B bound concentration of b-glucosidase (g/kg)
E2F free concentration of b-glucosidase (g/kg)
ET total enzyme concentration (g/kg)
E1T concentration of CBH and EG (g/kg)
E2T concentration of b-glucosidase (g/kg)
f 2 fraction of b-glucosidase protein in Spezyme CP
f bG fraction of the maximum b-glucosidase activity
G glucose concentration (g/kg)
G2 cellobiose concentration (g/kg)
JðhÞ cost function for parameter estimation
K3M cellobiose saturation constant (g/kg)
K1ad dissociation constant for the enzyme adsorption–

desorption reaction: 0.4 (g/g)
K2ad dissociation constant for the enzyme adsorption–

desorption reaction: 0.1 (g/g)
KiIA inhibition constant for acetic acid (g/kg)
KiIG inhibition constant for glucose (g/kg)
KiIG2 inhibition constant for cellobiose (g/kg)

KiIX inhibition constant for five carbon sugars (g/kg)
kir reaction rate (g� kg�1 � h�1)
RS substrate reactivity
rCI1�a relative half confidence interval
S cellulose concentration (g/kg)
V n�m derivative matrix
W n� n diagonal matrix of weights

Indices and sets
m number of parameters
n number of experimental measures
h set of parameters
hf set of parameters with fixed values
K set of combinations of m parameters taken k at a time,

each row (K) represents a particular combination of k
parameters

Greek symbols
a significance level for t-test and F-test
dmin minimum acceptable parameter sensitivity
dmsqr sensitivity measure
cK collinearity index of parameter subset K

cC
K collinearity index of complement of parameter subset K

cmax
K maximum allowable collinearity index

K0 matrix of elements of K showing cK 6 cmax
K
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