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a b s t r a c t

In this article, we propose an approach to integrate cortical morphology measures for improving the
discrimination of individuals with and without very mild Alzheimer’s disease (AD). FreeSurfer was
applied to scans collected from 83 participants with very mild AD and 124 cognitively normal in-
dividuals. We generated cortex thickness, white matter convexity (aka “sulcal depth”), and white matter
surface metric distortion measures on a normalized surface atlas in this first study to integrate high
resolution gray matter thickness and white matter surface geometric measures in identifying very mild
AD. Principal component analysis was applied to each individual structural measure to generate ei-
genvectors. Discrimination power based on individual and combined measures are compared, based on
stepwise logistic regression and 10-fold cross-validation. Global AD likelihood index and surface-based
likelihood maps were also generated. Our results show complementary patterns on the cortical sur-
face between thickness, which reflects gray matter atrophy, convexity, which reflects white matter sulcal
depth changes and metric distortion, which reflects white matter surface area changes. The classifier
integrating all 3 types of surface measures significantly improved classification performance compared
with classification based on single measures. The principal component analysis-based approach provides
a framework for achieving high discrimination power by integrating high-dimensional data, and this
method could be very powerful in future studies for early diagnosis of diseases that are known to be
associated with abnormal gyral and sulcal patterns.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Progressive gray matter atrophy that spreads from the medial
temporal lobe to the parietal and prefrontal cortices is a prominent
characteristic of the neurodegeneration that accompanies Alz-
heimer’s disease (AD) (Braak and Braak, 1991). Disruption of white
matter integrity and decreases in white matter volume have also
been observed around the temporal lobe, corpus callosum and
inferior longitudinal fasciculus in AD patients (Guo et al., 2010), and
around bilateral parahippocampal and temporal gyri in individuals
with mild cognitive impairment (MCI) (Stoub et al., 2006; Xie et al.,
2006). Moreover, a recent study found white matter integrity

degradation in cognitively normal individuals at risk for amnestic
MCI, whereas gray matter structures were relatively preserved in
these individuals (Zhuang et al., 2012). These results indicate that
white matter changes may be induced by different pathologic
origin compared with gray matter atrophy. And these local white
matter volume and integrity changes are likely associated with
geometric distortion to the white matter surface. Taken together,
cortical geometric features, which represent white matter atrophy,
and cortical gray matter thickness may provide complementary
information on AD progress. Therefore, integrating these features
may increase predictive power for identifying patients with AD at
an early stage.

Recent developments of surface-based modeling (SBM) in
magnetic resonance imaging (MRI) (Apostolova and Thompson,
2008; Dickerson et al., 2011) have enabled us to capture subtle
changes of geometric features of the cortical mantle. As an alter-
native to widely used region of interest (ROI) analysis (Jack et al.,
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1999) and voxel-based morphometry (Hamalainen et al., 2007),
these surface-basedmethodsmodel the cortical graymatter mantle
and its interfaces with the white matter and cerebrospinal fluid as
geometrical mesh structures. SBM achieves inter-subject registra-
tion of individual cortical mantle surfaces to a template based on
high-dimensional diffeomorphic maps (Apostolova and Thompson,
2008; Fischl et al., 1999; Miller, 2004), providing gray matter
thickness measures sensitive to submillimeter changes in neuro-
psychiatric diseases (Im et al., 2008).

Several studies have shown that combined multivariate or
multimodal datadstructural MRI including cortical thickness, vol-
ume, and tensor-basedmorphemotry, functionalMRI, FDG-PET, and
nonimaging data including cerebrospinal fluid biomarker and
neurocognitiondcould improve diagnostic power (Desikan et al.,
2009; Fan et al., 2008; Hinrichs et al., 2011; Kim and Lee, 2012;
Park et al., 2012; Zhang et al., 2011), and combining cortical gray
matter thickness and white matter surface measures could increase
prediction accuracy in autism (Ecker et al., 2010). In this article, we
present the first study to integrate cortical white matter surface
geometric and cortical thickness measures on the cortical surface
vertices to discriminate very mild AD from cognitively normal
controls. SBM was used to generate the following 3 cortical mea-
sures: (1) thickness, which reflects gray matter atrophy; (2) con-
vexity, which reflects white matter sulcal depth changes; and (3)
metric distortion, which reflects white matter surface area changes.
The surface geometric measures (i.e., convexity and metric distor-
tion) reflect the widening and shallowing of the cortical folding
pattern. As these cortical measures represent related but different
aspects of neuropathologic changes, we hypothesized that inte-
grating surface geometric measures along with cortical thickness
would increase the power of discriminating individuals with very
mild AD from age-matched healthy subjects.

2. Methods

2.1. Participants

Participants from the Knight Alzheimer Disease Research Center
at Washington University School of Medicine were included this
study. All participants were administered the Clinical Dementia
Rating scale (CDR) (Morris, 1993) and diagnosis and staging of de-
mentia of the Alzheimer type (McKhann et al., 1984). Within our
sample, 124 individuals received a CDR of 0 (i.e., controls), and 83
received a CDR of 0.5 with a concurrent diagnosis of dementia of the
Alzheimer type (i.e., very mild AD). Demographic data are reported
in Table 1.

2.2. MRI acquisition and image processing

All MR scans were collected on a 1.5-Tesla Siemens VISION
system. The MR scanning protocol included the collection of 2e4
3D magnetization-prepared rapid acquisition with gradient echo
(MPRAGE) volumes (repetition time ¼ 9.7 ms, echo time ¼ 4.0 ms,
flip angle ¼ 10�, voxel resolution 1 � 1 � 1.25 mm3, acquisition
time ¼ 6.5 minutes per scan). The MPRAGE scans for each subject

were aligned with the first and averaged to create a low-noise
image volume.

All MR images were processed using FreeSurfer (FS) v4.0.2.
Manual quality assurance procedures were carried out by a trained
rater to correct geometric inaccuracies or topologic defects.
Although on average 30e60minutes were required to complete the
quality assurance procedure per scan, we did not record the exact
time or type of correction and the rater was blinded as to the CDR of
the subjects. It would have been valuable to know whether more
clinically severe cases required more correction.

In this study, the following 3 cortical measures were provided by
FS:

� Cortical thickness (thk), calculated as the shortest distance
between the pial surface and white surface at each vertex.

� Average convexity (sulc), calculated as the integral movement
distance of each white surface vertex during spherical inflation.
It captures large-scale geometric features and in the meantime
is insensitive to small-scale local noise (Fischl et al., 1999).

� Local metric distortion (Jacobian), calculated as the ratio of a
triangle on the registered sphere and the triangle on the white
surface (before spherical inflation), normalized for the total
area of the white surface (Wisco et al., 2007).

These parameters capture complementary information of the
cortical surface (i.e., cortical mantle thickness, white surface folding
depth, and surface area distortion) for each participant. They were
registered and reindexed into FS’s template “fsaverage” surface
during the spherical surface inflation and registration process, fol-
lowed by 20-mm FWHM smoothing kernel. We chose a relatively
small smoothing kernel size (as opposed to 35 mm) to allow for
good localization and sensitivity while reducing the impact of
registration misalignment because of the relatively large sample
size (Lerch and Evans, 2005).

2.3. Statistical analysis

Multiple surface-based cortical measures suffer from dimen-
sionality problems with 163,842 vertices for each hemisphere. This
oversampling problem (i.e., the number of variables being far larger
than the number of observations) can lead to unreliable classifier
performance (Duin, 2000; Park et al., 2012; Ramirez et al., 2010).
Several machining learning methods, such as partial least squares
(Andersen et al., 2012; Ramirez et al., 2010; Thiele et al., 2013;
Westman et al., 2011, 2012) and support vector machine
(Davatzikos et al., 2008; Fan et al., 2008; Kloppel et al., 2008; Lerch
et al., 2008; Magnin et al., 2009; O’Dwyer et al., 2012; Plant et al.,
2010; Wee et al., 2011), which can extract feature variables based
on subjects’ label structure, have demonstrated to be effective in
data dimensionality reduction while achieving good classification
performance. These learning methods have been developed into a
variety of algorithms that have been applied to both structural and
functional MR data in studies of AD and MCI patients.

The more traditional but effective way to reduce data dimen-
sionality while preserving topographical distribution is to use
manifold-learning method, such as principal component analysis
(PCA). The PCA procedure on surfaces has been described in detail
in Joshi et al. (1997); Wang et al. (2001) and applied extensively by
our group for analysis of deformation-based subcortical structural
shape (Csernansky et al., 2004a; Goldman et al., 2011; Mamah
et al., 2012; Wang et al., 2001, 2003, 2007). Here, we applied
this method to the analysis of cortical thickness and geometric
measures, indexed on the “fsaverage” template surface where all
subjects’ vertices were in correspondence via the previously
mentioned registration and reindexing procedure. Because the

Table 1
Demographic data of all subjects

Cognitively normal
control (CDR ¼ 0),
N ¼ 124

Very mild AD
(CDR ¼ 0.5),
N ¼ 83

Comparison
(p value)

Gender (M/F) 42/82 40/43 c2 ¼ 4.26, p ¼ 0.039
Age (mean/SD) 74.7 �10.2 75.0 � 8.6 t ¼ �0.23, p ¼ 0.82

Key: AD, Alzheimer’s disease; CDR, clinical dementia rating.
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