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a b s t r a c t

In a previous report, we proposed a method for combining multiple markers of atrophy caused by
Alzheimer’s disease into a single atrophy score that is more powerful than any one feature. We applied
the method to expansion rates of the lateral ventricles, achieving the most powerful ventricular atrophy
measure to date. Here, we expand our method’s application to tensor-based morphometry measures. We
also combine the volumetric tensor-based morphometry measures with previously computed ventric-
ular surface measures into a combined atrophy score. We show that our atrophy scores are longitudinally
unbiased with the intercept bias estimated at 2 orders of magnitude below the mean atrophy of control
subjects at 1 year. Both approaches yield the most powerful biomarker of atrophy not only for ventricular
measures but also for all published unbiased imaging measures to date. A 2-year trial using our measures
requires only 31 (22, 43) Alzheimer’s disease subjects or 56 (44, 64) subjects with mild cognitive
impairment to detect 25% slowing in atrophy with 80% power and 95% confidence.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Imaging biomarkers of Alzheimer’s disease (AD) must offer
sufficient power to detect brain atrophy in subjects scanned
repeatedly over time (Cummings, 2010; Ross et al., 2012; Wyman
et al., 2012). The expected cost of a drug trial may be prohibi-
tively high, unless we can reasonably expect disease-slowing effects
to be detected quickly enough and with reasonably few subjects.
Imaging measures from standard structural magnetic resonance
imaging (MRI) show considerable promise. Their use stems from
the premise that longitudinal changes may be more precisely and

reproducibly measured with MRI than comparable changes in
clinical, cerebrospinal fluid (CSF), or proteomic assessments;
clearly, whether that is true depends on the measures used. The use
of MRI in a drug trial has some caveats; most MR studies from
published drug trials have detected no effect or even a small, and
possibly irrelevant but significant, increase in atrophy in the
treatment group. Brainmeasures that are helpful for diagnosis, such
as positron emission tomography (PET) scanning, may not be stable
for large multicenter (N ¼ several hundred) longitudinal trials that
aim to slow disease progression. Other markers, such as CSF mea-
sures of amyloid and tau proteins to assess brain amyloid, may
suffer the opposite problem of showing too little change during the
clinical AD period. As a result, there is interest in testing the
reproducibility of biomarkers, as well as methods to optimally
combine them (Yuan et al., 2012).

Recent studies have tested the reproducibility and accuracy of a
variety of MRI-derived measures of brain change. Several of these
are highly correlated with clinical assessments and can predict
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future decline on their own or in combination with other relevant
measures. Although not the only important consideration, some
analyses have assessed which MRI-based measures show greatest
effect sizes for measuring brain change over time, while avoiding
issues of bias and asymmetry that can complicate longitudinal
image analysis (Fox et al., 2011; Holland et al., 2011; Hua et al.,
2013), and while avoiding removing scans from the analysis that
may lead to unfairly optimistic sample size estimates (Hua et al.,
2013; Wyman et al., 2012). Promising MRI-based measures
include the brain boundary shift integral (Leung et al., 2012; Schott
et al., 2010), the ventricular boundary shift integral (Schott et al.,
2010), and measures derived from anatomic segmentation soft-
ware such as Quarc or FreeSurfer, some of which have been recently
modified to handle longitudinal data more accurately (Fischl and
Dale, 2000; Holland and Dale, 2011; Reuter et al., 2012; Smith
et al., 2002).

Although several power estimates are possible, the analysis
advocated by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) Biostatistics Core (Beckett, 2000) is to estimate the minimal
sample size required to detect, with 80% power, a 25% reduction in
the mean annual change, using a 2-sided test and standard signif-
icance level a ¼ 0.05 for a hypothetical 2-arm study (treatment vs.
placebo). The estimate for the minimum sample size is computed
from the formula below. bb denotes the annual change (average
across the group) and bs2

D refers to the variance of the annual rate of
change.

n ¼
2bs2

D

�
z1�a=2

þ zpower

�2
�
0:25bb�2

(1)

Here, za is the value of the standard normal distribution for
which P[Z < za] ¼ a the sample size required to achieve 80% power
is commonly denoted by n80. Typical n80s for competitivemethods
are under 150 AD subjects and under 300 mild cognitive impair-
ment (MCI) subjects; the larger numbers for MCI reflect the fact
that brain changes tend to be slower in MCI than AD, and MCI is an
etiologically more heterogeneous clinical category. For this reason,
it is harder to detect a modification of changes that are inherently
smaller, so greater sample sizes are needed to guarantee sufficient
power to detect the slowing of disease.

Many algorithms can detect localized or diffuse changes in the
brain, creating detailed 3D maps of changes (Avants et al., 2008;
Leow et al., 2007; Shi et al., 2009), but the detail in the maps
they produce is often disregarded when making sample size esti-
mates according to Equation 1 as the formula expects a single
univariate measure of change. In other words, it requires a single
number or “numeric summary” to represent all the relevant
changes occurring within the brain. To mitigate this problem, Hua
et al. (2009) defined a “statistical ROI” based on a small sample of
AD subjects by thresholding the t-statistic of each feature (voxel)
and summing the relevant features over the ROI; this approach was
initially advocated in the FDG-PET literature to home in on regions
that show greatest effects (Chen et al., 2010). In spirit, the statistical
ROI is a rudimentary supervised learning approach, as it finds re-
gions that show detectable effects in a training sample and uses
them to empower the analysis of future samples; the samples used
are nonoverlapping and independent to avoid circularity. However,
a simple threshold-based masking is known to potentially elimi-
nate useful features as binarization loses a lot of the information
present in continuous weights (Duda et al., 2001). Although many
studies have used machine learning to predict the progression of
neurodegenerative diseases and differentiate diagnostic groups
such as AD, MCI, and controls (Kloppel et al., 2012; Kohannim et al.,

2010; Vemuri et al., 2008), we found no attempts in the literature
that used learning to directly optimize power to detect brain
change.

To address this issue, we observed that minimizing Equation 1 is
exactly analogous to one-class linear discriminant analysis (LDA).
We applied the method to surface-based longitudinal expansion
rates of the ventricular boundary (Gutman et al., 2013), achieving
the lowest sample size estimates of any ventricle-based measure of
AD to date, both in terms of absolute and control-adjusted atrophy.
Here, we apply the LDA-based weighting to recently reported maps
of whole brain volume change based on tensor-based morphom-
etry (Hua et al., 2013). Further, we combine ventricular surface and
tensor-based morphometry (TBM) volume measures into one
combined atrophy score. Our results show a marked improvement
over the stat-ROI approach, achieving substantively lower sample
size estimates than any ADNI-based report to date.

2. Methods

2.1. Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.ucla.edu). The ADNI was launched in
2003 by the National Institute on Aging, the National Institute of
Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies and nonprofit
organizations as a $60 million, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI
and early AD. Determination of sensitive and specific markers of
very early AD progression is intended to aid researchers and clini-
cians to develop new treatments andmonitor their effectiveness, as
well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California, San Francisco.
ADNI is the result of efforts of many coinvestigators from a broad
range of academic institutions and private corporations, and sub-
jects have been recruited from over 50 sites across the United States
and Canada. The initial goal of ADNI was to recruit 800 adults, aged
55e90 years, to participate in the research, approximately 200
cognitively normal older individuals to be followed for 3 years, 400
people with MCI to be followed for 3 years, and 200 people with
early AD to be followed for 2 years. For up-to-date information, see
www.adni-info.org.

Longitudinal brain MRI scans (1.5 Tesla) and associated study
data (age, sex, diagnosis, genotype, and family history of AD) were
downloaded from the ADNI public database (http://www.loni.ucla.
edu/ADNI/Data/) on July 1, 2012. The first phase of ADNI, that is,
ADNI-1, was a 5-year study launched in 2004 to develop longitu-
dinal outcome measures of Alzheimer’s progression using serial
MRI, PET, biochemical changes in CSF, blood, and urine, and
cognitive and neuropsychological assessments acquired at multiple
sites similar to typical clinical trials.

All subjects underwent thorough clinical and cognitive assess-
ment at the time of scan acquisition. All AD patients met NINCDS/
ADRDA criteria for probable AD (McKhann et al., 1984). The ADNI
protocol lists more detailed inclusion and exclusion criteria
(Mueller et al., 2005a, 2005b), available online (http://www.
alzheimers.org/clinicaltrials/fullrec.asp?PrimaryKey¼208). The
study was conducted according to the Good Clinical Practice
guidelines, the Declaration of Helsinki and the United States, 21 CFR
Part 50-Protection of Human Subjects and Part 56-Institutional
Review Boards. Written informed consent was obtained from all
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