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a b s t r a c t

Brain connectivity is progressively disrupted in Alzheimer’s disease (AD). Here, we used a seemingly
unrelated regression (SUR) model to enhance the power to identify structural connections related to
cognitive scores. We simultaneously solved regression equations with different predictors and used
correlated errors among the equations to boost power for associations with brain networks. Connec-
tivity maps were computed to represent the brain’s fiber networks from diffusion-weighted magnetic
resonance imaging scans of 200 subjects from the Alzheimer’s Disease Neuroimaging Initiative. We
first identified a pattern of brain connections related to clinical decline using standard regressions
powered by this large sample size. As AD studies with a large number of diffusion tensor imaging scans
are rare, it is important to detect effects in smaller samples using simultaneous regression modeling
like SUR. Diagnosis of mild cognitive impairment or AD is well known to be associated with ApoE
genotype and educational level. In a subsample with no apparent associations using the general linear
model, power was boosted with our SUR modeldcombining genotype, educational level, and clinical
diagnosis.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Brain connectivity is progressively disrupted in Alzheimer’s
disease (AD). Several new technologies can recover patterns of

brain connectivity from scans performed in a clinical setting, such
as diffusion-weighted magnetic resonance imaging (MRI). Con-
nectivity maps are of interest from a neuroscientific point of view,
but there is also practical interest inwhether connectivitymeasures
are useful biomarkers for identifying factors that affect the brain in
epidemiologic studies or for monitoring brain decline in clinical
trials.

Connectivity maps reveal organizational features of the brain
not detectable on standard anatomical MRI. There is some interest
in determining whether connectivity measures might help in pre-
dicting patient diagnosis or prognosis, either alone or when com-
bined with other biomarkers. Connectivity measures may also
provide insight into disease beyond what can be inferred from
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other imaging measures or from clinical or cognitive assessments.
In particular, diffusion tensor imaging (DTI) and its mathematical
extensions (such as high angular resolution diffusion-weighted
imaging or q-space imaging) can reveal disease-related changes
in white matter integrity (Nir et al., 2013), and depict how various
cortical regions are connected to each other. Using diffusion MRI,
structural connectivity can be defined in terms of the density or
integrity of reconstructed fiber tracts connecting various regions of
the brain. Often, cortical regions are identified automatically on T1-
weighted structural MRI scans. Based on coregistered diffusion-
imaging data, we can then study the trajectories and densities of
white matter tracts interconnecting the cortical regions.

Clinical studies of brain connectivity are highly informative.
Brain connectivity changes profoundly during development
(Dennis et al., 2013; Hagmann et al., 2008, 2010) in normal aging
(Brown et al., 2011), in elderly people with HIV (Jahanshad et al.,
2012), AD (Daianu et al., 2013a; Nir et al., 2012), and other neuro-
degenerative diseases (Toga and Thompson, 2013), and in disorders
such as epilepsy (Engel et al., 2013). Suchwork reveals how diseases
disrupt connections and networks, offering insights into neurobio-
logical mechanisms and disease consequences.

Large-scale efforts, such as the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI), have led to analyses of neuroimaging
data in large cohorts of patients. ADNI recently launched a second
phase (ADNI-2) of longitudinal data collection to include diffusion-
weighted scans, with the goal of studying microstructural integrity
and anatomical connectivity (among other measures) in elderly
individuals. ADNI-2 is still in its early stages, and data are still being
collected from AD, mild cognitive impairment, and normal elderly
subjects with varying degrees of cognitive impairment. Of the
projected 1000 additional subjects in its second phase, ADNI will
scan around 300 subjects with DTI. Yet, even in the early stages of
data acquisition, connectivity disruptions in AD have been shown
using ADNI-DTI (Daianu et al., 2013a, 2013b; Hasan et al., 2012; Nir
et al., 2012; Prasad et al., 2013). As with the more commonMRI, DTI
can therefore also detect changes associated with dementia. Even
so, some factors that affect brain-imaging measures require tens of
thousands of subjects to detect (Hibar et al., 2013; Stein et al., 2012);
efforts are needed to maximize power for discovering factors that
predict network decline. Fortunately, combining predictors from all
clinical categories can significantly enhance power to predict brain
integrity and decline, or in other words, combining information
from multiple sources can reduce the sample size needed to detect
statistical associations (Kohannim et al., 2010; Xiang et al., 2013;
Yuan et al., 2012).

To identify clinically relevant changes in the brain’s networks,
one typical approach is to fit multiple general linear regression
models to identify connections whose integrity is statistically
associated with clinical or cognitive scores or with ratings of de-
mentia severity. Detecting connections whose strength are associ-
ated with cognitive decline may help to delineate compromised
brain regions and subnetworks. This may focus attention on regions
where medication effects may be monitored more specifically.
Ideally, one would prefer to analyze a very large cohort of subjects
to have enough statistical power to identify all connections asso-
ciated with changes in cognition. However, as with other measures,
the power to relate brain connectivity to clinical parameters is
limited by the available sample size. This makes it vital to examine
new ways to optimize power to detect clinical associations with
images.

In this study, we have 2 goals. First, we identify a pattern of
connections in the brain whose density is associated with clinical
decline. To do this, we use a standard regression model where the
elements of the connectivity matrix are predicted using widely

used cognitive test scores including the global clinical dementia
rating (CDR) and Mini-Mental State Examination (MMSE) scores.
The classical approach to find brain measures related to disease
burden is to fit a large regression model that includes as many
relevant predictors as possible. These predictors may include
measures of dementia severity (such as the CDR or MMSE) or other
predictors known to be associated with AD, such as ApoE4 geno-
type (Reiman et al., 1996), age, and educational level (Stern et al.,
1994). In other words, the connectivity matrix is treated as a 2D
image, and all relevant predictors are fitted to the data at each
matrix element, leading to a statistical parametric map of connec-
tions that decline in AD.

However, as a second goal, we propose a different and more
powerful tactic to pick up connectivity patterns that decline in
disease, based on a method known as seemingly unrelated
regression (SUR), adapted from econometrics (Zellner, 1962). SUR
is more common in the financial literature but perhaps less so in
brain imaging, so we explain it briefly here. In the standard sta-
tistical model, we could insert all the predictors we have (MMSE,
CDR, educational level, ApoE genotype, etc.) into a single multiple
regression equation to predict the values of connectivity matrix
elements, C(x,y). If that is done, then as long as there is sufficient
power to find an effect, a pattern of connections would be found
that relates to clinical decline. With SUR, we instead have a set of
simultaneous regression equations where each equation in the set
does not necessarily have to predict the same outcome measure.
Some of the regression equations may predict a different depen-
dent variable, and some predictors may be present or absent in
each equation. If the predictors depend on each other statistically,
we are then able to use the fact that the errors are correlated
among the larger set of equations to solve them more accurately.
We essentially use the correlated errors among equations to boost
power to find brain connections that decline in AD.

As SUR can be more powerful than a standard regression, we
used both SUR and a standard linear regression to identify brain
connections related to clinical decline. We hypothesized that SUR
would detect associations too weak to detect with the standard
model. Our goal was to boost the effect sizes of associations be-
tween brain connectivity measures and clinical scores to “revive”
significance for tests that would have failed using the standard
regression model. The overall goal of our work is to enhance the
power to pick up patterns of brain connections that decline in AD.
This is particularly useful when the available sample size is limited
but should always be beneficial even in large samples.

2. Methods

2.1. Subject information and image acquisition

Data collection for the second phase of the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI2) includes diffusion MRI,
but, at the time of writing (April 2013), this is still in its early
stages. Here, we performed an initial cross-sectional analysis of
the ADNI DTI data from 200 adults whose DTI scans passed a
quality control procedure; the QC process involved checking
each scan for cropping or incomplete coverage of the brain, slice
or gradient dropout, stripes or other artifacts, and excessive
distortion or excessive rotational or translational motion during
the scan. Scans that failed QC were excluded. Table 1 shows a
summary of relevant demographic information for these 200
participants. Age, sex, and educational level (in years) were
ascertained for all subjects. Clinical assessments of dementia
severity include the MMSE (Folstein et al., 1975) (lower scores
denote greater impairment), and the Clinical Dementia Rating
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