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a b s t r a c t

Alzheimer’s disease (AD) is characterized by cortical atrophy and disrupted anatomic connectivity, and
leads to abnormal interactions between neural systems. Diffusion-weighted imaging (DWI) and graph
theory can be used to evaluate major brain networks and detect signs of a breakdown in network
connectivity. In a longitudinal study using both DWI and standard magnetic resonance imaging (MRI),
we assessed baseline white-matter connectivity patterns in 30 subjects with mild cognitive impairment
(MCI, mean age 71.8 � 7.5 years, 18 males and 12 females) from the Alzheimer’s Disease Neuroimaging
Initiative. Using both standard MRI-based cortical parcellations and whole-brain tractography, we
computed baseline connectivity maps from which we calculated global “small-world” architecture
measures, including mean clustering coefficient and characteristic path length. We evaluated whether
these baseline network measures predicted future volumetric brain atrophy in MCI subjects, who are at
risk for developing AD, as determined by 3-dimensional Jacobian “expansion factor maps” between
baseline and 6-month follow-up anatomic scans. This study suggests that DWI-based network measures
may be a novel predictor of AD progression.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Alzheimer’s disease (AD), themost common form of dementia, is
characterized by memory loss in its early stages, typically followed
by a progressive decline in other cognitive domains. People with
mild cognitive impairment (MCI), a transitional stage between

normal aging and AD, convert to AD at a rate of about 10%e15% per
year (Bruscoli and Lovestone, 2004; Petersen et al., 2001). The Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) is one of several
major efforts worldwide to identify sensitive biomarkers that may
help track or predict brain tissue loss because of AD progression.

AD is marked by pervasive gray-matter atrophy, but the brain’s
white-matter (WM) pathways also progressively decline (Bartzokis,
2011; Braak and Braak, 1996; Braskie et al., 2011; Hua et al., 2013).
Recent models of AD suggest that cognitive deficits arise from the
progressive disconnection of cortical and subcortical regions, pro-
moted by neuronal loss and WM injury (Delbeuck et al., 2003;
Pievani et al., 2011). Many magnetic resonance imaging (MRI)e
based image analysis methods have been used to track structural
atrophy of the brain, but diffusion weighted imaging (DWI) is
sensitive to microscopic WM injury not always detectable with
standard anatomic MRI. DWI may be used to track the highly
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anisotropic diffusionofwater along axons, revealingmicrostructural
WM fiber bundles connecting cortical and subcortical regions and
allowing for characterization of the brain’s WM structural network
(Hagmann et al., 2008).

Graph theory network topology measures have been used
increasingly to analyze brain networks and characterize network
organization. “Small-world” network properties have been regar-
ded as typical properties of many kinds of communication net-
works and are found in social networks, efficient biological
networks, and in healthy mammalian brain networks (Achard and
Bullmore, 2007; Hilgetag et al., 2000; Iturria-Medina et al., 2008;
Reijneveld et al., 2007). Networks with a small-world organization
can have both functional segregation and specialization of modules
and a “low wiring cost” that supports easy communication across
an entire network. Small-world networks are marked by low
characteristic path length (CPL) and high mean clustering coeffi-
cient (MCC); so, they are both integrated and segregated. Studies
using various modalities, including cortical thickness analyses,
functional MRI, and electroencephalography, suggest that AD pa-
tients have abnormal small-world architecture in their large-scale
structural and functional brain networks, with differences in MCC
and CPL that may imply less optimal network topology (Brown
et al., 2011; He et al., 2008; Sanz-Arigita et al., 2010; Stam et al.,
2007; Toga and Thompson, 2013).

In this study, we assessed 30 ADNI participants showing signs of
MCI. MCI subjects are the target for many clinical trials that aim to
slowdisease progression, before brain changes are so pervasive that
they are irremediable. However, predictors of decline in MCI are
sorely needed, as mildly impaired subjects do not usually exhibit
drastic changes in most standard biomarkers of AD. Here, we
combined DWI with longitudinally acquired standard anatomic
MRI (across a 6-month interval) to measure the microstructure and
connectivity of WM tracts and assess whether variations in the
degree and extent of connections might predict future brain
decline. We created 68 � 68 structural connectivity matrices, or
graphs, that describe the strength of connections between any pair
of brain regions based on baseline structural cortical parcellations
and whole-brain tractography. In these graphs, “nodes” designate
brain regions that are thought of as being connected by “edges”
representing WM fibers. We then used graph theory to describe
general properties of the anatomic networks and to characterize
connectivity patterns.

Given the recent interest in “small-world” phenomena as a
characteristic of biological networks, we examined whether global
small-world architecture network measures, MCC and CPL, calcu-
lated from baseline connectivity maps were associated with
“future” volumetric brain atrophy (dynamic tissue loss) over a 6-
month follow-up period, as determined by 3-dimensional (3D) Ja-
cobian “expansion factor maps” of T1-weighted structural scans.
That is, we tested whether the intactness of the brain’s anatomic
network was associated with ongoing brain decline in the future,
assessed using the more accepted anatomic MRI methods. In the
follow-up analyses, we additionally assessed whether several
baseline local nodal measures (efficiency [EFF], clustering, and
betweenness [BTW] centrality) were associated with volumetric
brain atrophy. We found that global and nodal network measures
may offer a potentially useful biomarker for predicting longitudinal
atrophy, at this critical time before the onset of AD.

2. Methods

2.1. Subject information and image acquisition

Data collection for the ADNI2 project (the second phase of ADNI)
is still in progress. Here, we performed an initial analysis of 30 MCI

subjects who had returned for a follow-up evaluation at 6 months
(mean age at baseline 71.8� 7.5 years,18males and 12 females). We
note that in ADNI2, MCI participants include the enrollment of a
new early MCI cohort, with milder episodic memory impairment
than the MCI group of ADNI1, now called late MCI in ADNI2
(Table 1). We additionally analyzed baseline data from 29 cogni-
tively healthy control subjects to create a study-specific brain
template (mean age at baseline 73.4 � 5.2 years, 15 males and 14
females). Detailed inclusion and exclusion criteria are found in
the ADNI2 protocol (http://adni-info.org/Scientists/Pdfs/ADNI2_
Protocol_FINAL_20100917.pdf).

All subjects underwent whole-brain MRI scanning on 3-T GE
Medical Systems scanners, on at least 1 of 2 occasions (baseline and
6 months). T1-weighted IR-FSPGR (inversion recovery fast spoiled
gradient echo sequence) sequences (256 � 256 matrix, voxel size ¼
1.2�1.0� 1.0mm3, inversion time¼ 400ms, repetition time¼ 6.98
ms, echo time ¼ 2.85 ms, and flip angle ¼ 11�) and diffusion-
weighted images (DWIs; 35-cm field of view, 128 � 128 acquired
matrix, reconstructed to a 256 � 256 matrix, voxel size 2.7 � 2.7 �
2.7 mm3, scan time ¼ 9 minutes, and more imaging details may be
found at http://adni.loni.usc.edu/wp-content/uploads/2010/05/
ADNI2_GE_3T_22.0_T2.pdf) were collected. Forty-six separate im-
ages were acquired for each DWI scan: 5 T2-weighted images with
no dedicated diffusion sensitization (b0 images) and 41 DWIs (b ¼
1000 seconds/mm2). The DWI protocol for ADNI was chosen after a
detailed evaluation of different protocols that could be performed
in a reasonable amount time; we reported results of these com-
parisons previously (Jahanshad et al., 2010; Zhan et al., 2012a). All
T1-weighted MRIs and DWIs were checked visually for quality
assurance to exclude scans with excessive motion and/or artifacts
after preprocessing corrections; all scans were included.

2.2. Image preprocessing

2.2.1. Preprocessing of baseline and 6-month follow-up anatomic
scans

All extracerebral tissue was removed from both baseline and 6-
month T1-weighted anatomic scans using a number of software
packages, primarily ROBEX, a robust automated brain extraction
program trained on manually “skull-stripped” MRI data (Iglesias
et al., 2011), and FreeSurfer (Fischl et al., 2004). Skull-stripped
volumes were visually inspected, and the best one was selected
and further manually edited. Anatomic scans subsequently under-
went intensity inhomogeneity normalization using the Montreal
Neurologic Institute nu_correct tool (http://www.bic.mni.mcgill.ca/
software/). To align data from different subjects into the same 3D
coordinate space, each anatomic image was linearly aligned to a
standard brain template (the Colin27, Holmes et al., 1998) using FSL
FLIRT (Jenkinson et al., 2002).

2.2.2. Baseline DWI preprocessing
Foreach subject, all rawDWIvolumeswerealigned to theaverage

b0 image using the FSL eddy-correct tool (http://www.fmrib.ox.ac.

Table 1
Demographics and clinical scores for the participants

e-MCI (n ¼ 21) l-MCI (n ¼ 9) p value for group difference

e-MCI versus l-MCI

Age (y) 71.6 � 8.1 72.1 � 6.6 0.87
Sex 11 M/10 F 7 M/2 F d

Education (y) 15.8 � 2.7 16.2 � 3.1 0.73
MMSE 27.9 � 1.8 27.6 � 1.7 0.63

Key: e-MCI, early mild cognitive impairment; F, females; l-MCI, late MCI; M, males;
MMSE, Mini-Mental State Examination.
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