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a b s t r a c t

We compare a variety of different anatomic connectivity measures, including several novel ones, that
may help in distinguishing Alzheimer’s disease (AD) patients from controls. We studied diffusion-
weighted magnetic resonance imaging from 200 subjects scanned as part of the Alzheimer’s Disease
Neuroimaging Initiative. We first evaluated measures derived from connectivity matrices based on
whole-brain tractography; next, we studied additional network measures based on a novel flow-based
measure of brain connectivity, computed on a dense 3-dimensional lattice. Based on these 2 kinds of
connectivity matrices, we computed a variety of network measures. We evaluated the measures’ ability
to discriminate disease with a repeated, stratified 10-fold cross-validated classifier, using support vector
machines, a supervised learning algorithm. We tested the relative importance of different combinations
of features based on the accuracy, sensitivity, specificity, and feature ranking of the classification of 200
people into normal healthy controls and people with early or late mild cognitive impairment or AD.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Current approaches used to classify Alzheimer’s disease (AD)
(Klöppel et al., 2008; Kohannim et al., 2010) rely on features such as
volumetric measures from anatomic regions in magnetic resonance
imaging (MRI) of the brain, cerebrospinal fluid biomarkers, apoli-
poprotein E genotype, age, sex, body mass index, and, in some
cases, clinical and cognitive tests. Here, we attempted to improve
our understanding of the best features for AD classification by

studying the utility of a variety of brain connectivity measures
derived from diffusion-weighted images (DWIs) of the brain. Some
of the features we chose came from standard tractography-based
maps of fiber connectivity (Rubinov and Sporns, 2010) between
brain regions; we supplemented these with more novel features
derived from a flow-based connectivity method (Prasad et al.,
2013b). We aimed to understand the information contained in the
raw connectivity matrices versus network measures derived from
them; we used all the resulting features to differentiate diagnostic
categories related to AD (e.g., mild cognitive impairment [MCI]). To
do this, we employed support vector machines (SVMs), a machine
learning algorithm for classification, to learn from training data and
then classify a separate test set.

Cui et al. (2012) used SVMs to classify amnestic MCI based on
features indexing anatomic atrophy through segmentations of T1-
weighted MRI and fraction anisotropy values from diffusion im-
ages using tract-based spatial statistics. They ranked the features
using Fisher scores and selected the best-performing subset using
cross-validation. They achieved an accuracy of 71.09%, sensitivity of
51.96%, and specificity of 78.40% for the classification of amnestic
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MCI. Our method differs in that we use only measures of connec-
tivity from diffusion images for our feature set, and the ranking is
computed within a set of features we are interested in evaluating.
Laplacian regularized least squares was used to classify AD in Zhang
and Shen (2011) where they tried to incorporate structural MRI, PET
imaging data, and cerebrospinal fluid biomarker features from MCI
into an AD classifier, which achieved a performance of almost 95%
accuracy. In our case, we explore classification of both MCI and AD
and focus on the information contained in different types of con-
nectivity features. Cortical thickness features from structural MRI
were evaluated by Eskildsen et al. (2012) using classification
although they focused on conversion from MCI to AD and achieved
accuracies ranging from 70% to 76% depending on the time to
conversion, in contrast we used classification as a means to un-
derstand the information captured in measures of connectivity. The
emphasis in the present study is to explore and understand which
diffusion-based network measures are predictive of AD in contrast
to the goal of optimizing the accuracy of classification in previous
studies.

Our results and experiments seek to characterize the information
contained in different features used to represent connectivity in the
brain. This is related to the problem of feature selection methods
(Guyon and Elisseeff, 2003), which rank features in a meaningful
way to understand the ones that are important and those that can be
discarded because theyare redundant or irrelevant. One approach to
select the best features (Peng et al., 2005) is to use mutual infor-
mation to find the most relevant features for a target class. Another
popular approach is the least absolute shrinkage and selection
operator (Tibshirani, 1996) that uses a linear model and its regres-
sion coefficients to choose the best subset of features. De Martino
et al. (2008) chose the most informative voxels in functional MR
images using a recursive feature elimination approach that repeat-
edly trains an SVM model to remove features contributing a small
amount to the trainingmodel. In our technique, we use the accuracy
from classification to evaluate different types of brain connectivity
features and to understand which ones may have an advantage to
classifying MCI or AD. In addition, we used the SVMs to rank the
features within the different feature sets to get a better description
of what features were driving the classifier.

Our connectivity measure computation, classification frame-
work, and ranking were applied to publicly available structural and
diffusionMRI from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (Mueller et al., 2005). We studied neuroimaging data from
200 subjects: 50 normal healthy controls, 38 people with late MCI
(LMCI), 74 with early MCI (EMCI), and 38 AD patients.

We extracted measures of connectivity between 68 automatically
parcellated regions of interest on the cortex using both fiber and flow
connectivity methods and organized the information into connec-
tivity matrices. From these connectivity matrices, we computed a
variety of widely used network measures. These features were then
fed into a repeated, stratified 10-fold cross-validation design, using
SVMs to classify controls versus AD, controls versus EMCI, controls
versus LMCI, and EMCI versus LMCI. Our results show a significant
difference in the accuracy of various combinations of features that
were used to distinguish between the various diagnostic groups.

2. Methods

2.1. Data

Our data were from 200 subjects scanned as part of ADNI-2, a
continuation of the ADNI project in which diffusion imaging
(among other scans) was added to the standard MRI protocol.
The dataset included diffusion MRI data from 50 cognitively

normal controls (C), 74 EMCI and 38 LMCI subjects, and 38
people with AD.

Subjects were scanned on 3-T GE Medical Systems scanners,
which collected both T1-weighted 3-dimensional anatomic spoiled
gradient-echo sequences (256� 256matrix, voxel size¼ 1.2�1.0�
1.0 mm3, inversion time ¼ 400 ms, repetition time ¼ 6.98 ms, echo
time ¼ 2.85 ms, and flip angle ¼ 11�) and DWIs (256 � 256 matrix,
voxel size 2.7 � 2.7 � 2.7 mm3, scan time ¼ 9 minutes). Per subject,
the DWIs consisted of 41 diffusion images with b ¼ 1000 seconds/
mm2 and 5 T2-weighted b0 images. This protocol was chosen after
an effort to study trade-offs between spatial and angular resolu-
tions in a tolerable scan time (Jahanshad et al., 2011).

The groupswerematched in both age and sex that we confirmed
using 2-sample t tests andmultiple comparison correction. Detailed
demographic information for each subgroup of subjects is listed in
Table 1.

2.1.1. Image preprocessing
Weprocessed the T1-WIs to parcellate them into 68 cortical regions.

We first automatically removed extracerebral tissues from the
anatomic images using ROBEX (Iglesias et al., 2011a), a method that
learned from manual segmentations of hundreds of healthy young
adults. Skull-stripped brains were inhomogeneity corrected using the
N3 tool of the Montreal Neurologic Institute (Sled et al., 1998) and
aligned to the Colin27 template (Holmes et al., 1998) with the Oxford
Centre for Functional Magnetic Resonance Imaging of the Brain
(FMRIB)’s Linear Image RegistrationTool (FLIRT) (Jenkinson et al., 2002).

Table 1
The demographic details for our age- and sex-matched sample

All NC EMCI LMCI AD

N 200 50 74 38 38
Sex 115 M/85 F 23 M/27 F 46 M/28 F 24 M/14 F 22 M/16 F
Age 73.1 � 7.5 72.4 � 6.2 72.5 � 8.0 72.6 � 5.6 75.8 � 9.1

The number of subjects (N), sex, and age are given for the full sample (all), elderly
NCs, EMCI and LMCI subcategories, and AD patients. We carried out 2-sample t tests
comparing age and sex between all pairs of subcategories and found no significant
differences that passed the multiple comparison threshold.
Key: AD, Alzheimer’s disease; EMCI, early mild cognitive impairment; F, female;
LMCI, late MCI; M, male; NC, normal controls.

Table 2
List of the 34 regions that are segmented in the cortex by FreeSurfer in each
hemisphere, making a total of 64 regions

Cortical regions

1. Banks of the superior
temporal sulcus

18. Pars orbitalis

2. Caudal anterior cingulate 19. Pars triangularis
3. Caudal middle frontal 20. Peri calcarine
4. Cuneus 21. Postcentral
5. Entorhinal 22. Posterior cingulate
6. Fusiform 23. Precentral
7. Inferior parietal 24. Precuneus
8. Inferior temporal 25. Rostral anterior cingulate
9. Isthmus of the cingulate 26. Rostral middle frontal
10. Lateral occipital 27. Superior frontal
11. Lateral orbitofrontal 28. Superior parietal
12. Lingual 29. Superior temporal
13. Medial orbitofrontal 30. Supramarginal
14. Middle temporal 31. Frontal pole
15. Parahippocampal 32. Temporal pole
16. Paracentral 33. Transverse temporal
17. Pars opercularis 34. Insula

These regions represent the nodes in the connectivity network for both the fiber and
flow connectivity methods. In the network, each method calculated the connectivity
strength between all pairs of regions. For fiber connectivity, this is computed as the
number of tractography fibers that connect the 2 regions and for the flow connec-
tivity it is computed using an approximate maximum-flow algorithm between the
regions.
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