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a b s t r a c t

The discovery of several genes that affect the risk for Alzheimer’s disease ignited a worldwide search for
single-nucleotide polymorphisms (SNPs), common genetic variants that affect the brain. Genome-wide
search of all possible SNP-SNP interactions is challenging and rarely attempted because of the
complexity of conducting approximately 1011 pairwise statistical tests. However, recent advances in
machine learning, for example, iterative sure independence screening, make it possible to analyze data
sets with vastly more predictors than observations. Using an implementation of the sure independence
screening algorithm (called EPISIS), we performed a genome-wide interaction analysis testing all
possible SNP-SNP interactions affecting regional brain volumes measured on magnetic resonance im-
aging and mapped using tensor-based morphometry. We identified a significant SNP-SNP interaction
between rs1345203 and rs1213205 that explains 1.9% of the variance in temporal lobe volume. We
mapped the whole brain, voxelwise effects of the interaction in the Alzheimer’s Disease Neuroimaging
Initiative data set and separately in an independent replication data set of healthy twins (Queensland
Twin Imaging). Each additional loading in the interaction effect was associated with approximately 5%
greater brain regional brain volume (a protective effect) in both Alzheimer’s Disease Neuroimaging
Initiative and Queensland Twin Imaging samples.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many common brain disorders such as Alzheimer’s disease (AD),
schizophrenia, and bipolar disorder are more prevalent in family

members of those affected than in the population as a whole
(Lichtenstein et al., 2009; Pedersen et al., 2004). If disease risk in-
creases in relatives of patients, it is possible to use family studies to
estimate the overall proportion of disease risk attributable to
common or rare transmitted variants in our DNA; this is the concept
of heritability (Neale and Cardon, 1992).

However, identifying the specific DNA variants associated
with increased disease risk is an incredibly complex task. There
are over 3 billion base pairs in our DNA, and over 10 million of
these are known to have variations that are somewhat prevalent
(>1%) in the population (1000 Genomes Project Consortium
et al., 2010). Each of these variants may have a unique and
often unknown role to play in the biology of the human body
although the vast majority likely has no role at all. Similarly, for
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many brain disorders we have an incomplete understanding of
the underlying etiology. Commonly measured clinical scores are
used for diagnosis, but, in some cases, neuroimaging measures
may offer better biomarkers of disease progression and severity
(Braskie et al., 2013; Jack et al., 2004).

The field of neuroimaging genetics uses neuroimaging bio-
markers as proxies for disease (also called endophenotypes;
Gottesman and Gould, 2003) to identify specific genetic variants
that affect quantitative measures of the brain structure or function.
One goal of imaging genetics is to identify common genetic variants
that affect the brain, positively or negatively, and then understand if
and how any of those variations are associated with increased risk
for developing a specific brain disease. Conversely, it is possible to
use neuroimaging to identify the effects of AD risk genes whose
function is not yet well understood (Braskie et al., 2011). For
example, a common variant in the CLU gene confers a heightened
risk for AD (by 10%e20%) in a large sector of the population,
although the mechanism is not known. Neuroimaging of carriers of
this variant revealed widespread reduction in the brains’ fiber
integrity around 50 years before the disease is typically diagnosed.
Similarly, the TREM2 gene harbors rarer variants that elevate AD by
a still greater factor, and neuroimaging has recently established that
carriers of the adverse variant lose brain tissue faster (Rajagopalan
et al., 2013).

Until recently, neuroimaging genetics studies have tended to
focus on candidate genes such as brain-derived neurotrophic
factor (Bueller et al., 2006) and catechol-O-methyltransferase
(Egan et al., 2001). Biffi et al. (2010) looked at AD candidate
genes APOE, CR1, and PICALM and found that each gene has
significant effects on neuroimaging biomarkers like hippocampal
volume. Candidate gene studies examine small subsets of gene
changes chosen from the millions of variants in our DNA based on
prior hypotheses about underlying disease pathways. However,
many candidate gene studies have a mixed history of replication
(see Supplementary Tables 7 and 8 in Stein et al., 2012). For many
candidate genes in psychiatry, although not so much in the de-
mentia field, there is some level of controversy or uncertainty as
to whether the effects are robust; very large consortia, such as
the Psychiatric Genomics Consortium (Ripke et al., 2011) and the
Enhancing Neuro Imaging Genetics through Meta-Analysis
(ENIGMA) Consortium (Hibar et al., 2013; Jahanshad et al.,
2013; Stein et al., 2012) have been set up to verify genetic ef-
fects with unprecedented power. In contrast, genome-wide as-
sociation studies (GWAS), which systematically screen millions of
common variants in our DNA, called single-nucleotide poly-
morphisms (SNPs), have recently found a large number of repli-
cated associations of genetic polymorphisms with disease, often
using a hypotheses free screen of the genome (Harold et al.,
2009). For example, Stein et al. (2012) performed a GWAS of
mean hippocampal volume, total brain volume, and intracranial
volume in 10,372 subjects for the ENIGMA Consortium. Stein
et al. (2012) identified 2 genome-wide significant SNPs related
to hippocampal volume rs7294919 (located in chromosome
12q24.22) and intracranial volume rs10784502 (located in chro-
mosome 12q14.3). The results were independently replicated in
another large GWAS by the Cohorts for Heart and Aging Research
in Genomic Epidemiology Consortium (Bis et al., 2012). The
convergent results from the ENIGMA and Cohorts for Heart and
Aging Research in Genomic Epidemiology consortia provide evi-
dence and replication for real genetic effects on hippocampal and
intracranial volumes that are consistent worldwide.

However, many of the reported findings from GWA studies
have small effect sizes and explain only a small proportion of the
variance estimated to be because of purely genetic factors. In the
ENIGMA study of hippocampal volume, Stein et al. (2012) showed

that mean hippocampal volume was 64%e72% heritable, but their
most significant SNP explained only 0.265% percent of the total
observed variance in hippocampal volume. Similarly, height is
very highly heritable (around 80%; Macgregor et al., 2006;
Silventoinen et al., 2003), and a large GWAS of height in
183,727 subjects identified 180 significant SNPs that collectively
explain 10% of the observed variance in height (Lango Allen et al.,
2010). These findings have led to speculation about the source of
the missing heritability; the proportion of variance in a trait that
we know is influenced by genetics, but that is undetectable, so
far, in the common genetic variants examined to date in GWA
studies. Potential sources of the missing heritability might be
caused by nonadditive effects like dominance and SNP-SNP in-
teractions (called epistasis; Carlborg and Haley, 2004) and gene-
by-environment interactions (Visscher et al., 2008), and rare
genetic variants (Manolio et al., 2009). It is also possible that
deeper sequencing of the genome will identify causal loci with
greater effects, as GWAS often genotypes only a subset of the
common variants in the genome. Whole-exome sequencing and
whole-genome sequencing, for example, are already underway
for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort. Although interaction testing holds promise, depending on
the influence of the underlying interaction current statistical
approaches can be underpowered (Marchini et al., 2005). Further
still, some estimates show that interactions in regions outside of
the highly polymorphic human leukocyte antigen region in the
genome might not significantly improve our understanding of the
problem of missing heritability (Clayton, 2009). In this article, we
will focus our analysis on SNP-SNP epistatic interactions. These
are not well studied and some of the computational reasons and
challenges are explained below, along with a proposed solution.

Some prior studies have examined epistatic effects of SNPs
on brain structure (Pezawas et al., 2008; Tan et al., 2007; Wang
et al., 2009). Chiang et al. (2012), tested for SNP effects on
diffusion imaging measures, and aggregated all SNPs with
correlated effects into a network. The concept here is different
and aims to assess gene pairs that influence each other’s effects
on the brain. None of these prior studies has considered
genome-wide genotype data; the closest conceptually related
study tested interaction effects for preselected SNPs in genes
and pathways already known to be related to AD (Meda et al.,
2013). Any approach based on preselecting a pair of genes will
overlook a vast search space of potential interactions among
SNPs in the genome that have no obvious prior connection. In an
interaction model, a predictor variable in the model does not
have to be significant to result in a significant interaction. This is
another way of saying that dropping nonsignificant SNPs from
the SNP-SNP interaction search will miss some important in-
teractions (Cordell, 2009). Given this, prior hypotheses focusing
only on SNPs that have the largest known individual effects may
also overlook large epistatic interaction effects. Intriguingly,
power estimates for detecting interactive effects for certain
models of the genetic contribution to complex traits are com-
parable with those for single SNP tests (Marchini et al., 2005).
The inclusion of interaction terms was shown to boost the po-
wer to detect main effects in models of type 1 diabetes (Cordell
et al., 2001). Here, we examine the genome-wide, SNP-SNP
“interactome” to test genetic associations with a quantitative
biomarker of AD (temporal lobe volume) in the publicly avail-
able ADNI data set. We further examine the whole-brain effects
of interaction pairs in statistical parametric maps generated with
tensor-based morphometry (TBM); we also replicate our tests in
an independent, nonoverlapping data set of young healthy twins
from the Queensland Twin Imaging (QTIM) study (de Zubicaray
et al., 2008).
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