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a b s t r a c t

A pressing need exists to disentangle age-related changes from pathologic neurodegeneration. This study
aims to characterize the spatial pattern and age-related differences of biologically relevant measures
in vivo over the course of normal aging. Quantitative multiparameter maps that provide neuroimaging
biomarkers for myelination and iron levels, parameters sensitive to aging, were acquired from 138
healthy volunteers (age range: 19e75 years). Whole-brain voxel-wise analysis revealed a global pattern
of age-related degeneration. Significant demyelination occurred principally in the white matter. The
observed age-related differences in myelination were anatomically specific. In line with invasive histo-
logic reports, higher age-related differences were seen in the genu of the corpus callosum than the
splenium. Iron levels were significantly increased in the basal ganglia, red nucleus, and extensive cortical
regions but decreased along the superior occipitofrontal fascicle and optic radiation. This whole-brain
pattern of age-associated microstructural differences in the asymptomatic population provides insight
into the neurobiology of aging. The results help build a quantitative baseline from which to examine and
draw a dividing line between healthy aging and pathologic neurodegeneration.

� 2014 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

Age is the highest risk factor for neurodegenerative disease yet it
remains unclear what triggers normal aging processes to diverge

into neurodegeneration. In older adults, brain pathology can be
present with no apparent cognitive impairment (Fotuhi et al., 2009;
Zecca et al., 2004). Macrostructural tissue loss has proved a sensi-
tive marker for neurodegeneration despite having poor pathologic
specificity (Barkhof et al., 2009; Benedict and Zivadinov, 2011;
Frisoni et al., 2010; McDonald et al., 2009; Scahill et al., 2002).
Markers of microstructural changes accompanying atrophy are
required to increase sensitivity and specificity (Barkhof et al., 2009;
Benedict and Zivadinov, 2011; Frisoni et al., 2010; Noseworthy,
1999; Scahill and Fox, 2007). Our aging population presents a
pressing need to disentangle age-related changes from pathologic
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neurodegeneration. This motivated our study in which we examine
normal age-related differences and population variance of quanti-
tative magnetic resonance imaging (MRI) parameters that have
been shown to reflect underlying differences in the brain micro-
structure (Dick et al., 2012; Draganski et al., 2011; Freund et al.,
2013; Sereno et al., 2013).

Myelin sheaths exhibit degenerative changes with age that
reduce conduction velocity (Adinolfi et al., 1991; Aston-Jones
et al., 1985) along affected nerve fibers and may explain some
of the cognitive decline seen in older adults (Marner et al., 2003;
Peters, 2002). The effects of age on myelin are complex because
even though some myelin sheaths are seen to degenerate with
age, the process of myelin production continues throughout life,
though possibly in an uncontrolled or dysfunctional manner
(Peters, 2002). Oligodendrocytes are crucial for the production
and maintenance of myelin and require iron to sustain their high
metabolic rate and facilitate the synthesis of lipids and choles-
terol necessary to carry out these functions (Bartzokis, 2011;
Connor and Menzies, 1996; Todorich et al., 2009). This makes
iron a key co-factor in the production and maintenance of
myelin. Iron levels are highly spatially and developmentally
heterogenous, increasing rapidly during development with linear
increases in later life, even plateauing in some regions (Hallgren
and Sourander, 1958). Oligodendrocytes that differentiate later in
life produce thinner sheaths that cover a larger number of
thinner axons that are more susceptible to functional impair-
ment and destruction (Bartzokis, 2004; Kemper, 1994; Marner
et al., 2003; Terao et al., 1994). Over the course of aging, iron
accumulates in brain regions that are susceptible to neurode-
generative diseases (Connor et al., 1990; Dexter et al., 1991;
Jellinger and Paulus, 1990; Zecca et al., 2004) though it is not
wholly clear whether this accumulation is a cause or an effect of
degeneration.

Quantitative MRI can circumvent some of the drawbacks
of histologic analysis by producing neuroimaging markers for
biologically relevant quantities noninvasively. Recent technical
developments have enabled in vivo mapping to be performed with
high resolution andwhole brain coverage (Deoni et al., 2005; Helms
and Dechent, 2009; Helms et al., 2008a, 2008b). Macromolecular
protons, such as those found in myelin, can be selectively saturated
using off-resonance radiofrequency (RF) pulses leading to attenu-
ation of the magnetic resonance (MR) water signal by magnetiza-
tion transfer (MT) (Wolff and Balaban, 1989). Voxels with a higher
macromolecular content will show a greater percentage loss of
water magnetization as a consequence of a given pre-pulse (MT
saturation). Magnetization transfer measures have been shown to
correlate with histologically measured myelin content (Schmierer
et al., 2004, 2007), whereas quantitative relaxation rate measure-
ments correlate with iron content (Daugherty and Raz, 2012; House
et al., 2007; Langkammer et al., 2010; Rodrigue et al., 2013; Vymazal
et al., 1996).

Gaining insight into the multifaceted and inter-dependent bio-
logical processes that underlie both aging and neurodegeneration is
a complex problem. Here, we use quantitative multiparameter
mapping (MPM), which is ideally suited to probe the multiple
factors of aging. MPM quantifies the longitudinal relaxation rate, R1,
effective transverse relaxation rate, R2*, percent saturation because
of MT and effective proton density (PD*). We present a cross-
sectional whole brain voxel based quantification (VBQ) analysis of
these 4 parameters acquired on a large cohort of healthy volunteers
covering a broad age range. We hypothesized that age would
correlate with regionally specific reductions in myelin content,
changes in iron and water content and ultimately with brain atro-
phy and that these microstructural changes would be reflected by
age-related differences in the MPM data.

2. Methods

2.1. Participants

Participants were recruited from the local university population
and by advertising on the departmental website and in local
buildings as well as through word of mouth. Potential participants
were screened and excluded if they had any of the following:
metallic implants, epilepsy, diabetes, history of seizures, neurologic,
medical or psychiatric disorders. Of the final pool of participants, all
but 2 (1 male, 1 female) were right-handed. To assess cognitive
integrity, all older adult participants (60 years or more) additionally
underwent a Mini Mental State Examination and achieved scores of
28 or greater. The final cohort consisted of 138 volunteers, of which
49 were men. The group ranged in age from 19 to 75 years with a
mean age of 46.6 years and a standard deviation of 21 years.
Informed written consent was obtained before scanning.

2.2. Data acquisition

Participants were examined on two 3T whole body MR systems
(Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany, 69
participants per scanner) each equipped with a standard 32 chan-
nel head coil for receive and RF body coil for transmission. The data
were acquired as part of several cognitive neuroimaging studies at
the Wellcome Trust Centre for Neuroimaging with approval from
the local ethics committee.

A whole-brain quantitative MPM protocol was used. This con-
sists of 3 spoiled multi-echo 3D fast low angle shot (FLASH) acqui-
sitions with 1 mm isotropic resolution and 2 additional calibration
sequences to correct for inhomogeneities in the RF transmit field
(Lutti et al., 2010, 2012; Weiskopf et al., 2013). The FLASH volumes
were acquired with predominantly proton density (PD), T1 or MT
weighting, determined by the repetition time, and flip angle (a)
(repetition time and flip angle were for the PD- and MT-weighted
acquisitions: 23.7 ms/6�; and for the T1-weighted acquisition: 18.7
ms/20�). In the case of the MT-weighted acquisition, a Gaussian RF
pulse with 4 ms duration and 220� nominal flip angle was applied 2
kHz off-resonance before nonselective excitation. Gradient echoes
were acquired with alternating readout gradient polarity at 6
equidistant echo times between 2.2 ms and 14.7 ms. Two additional
echoes were acquired for the PD-weighted acquisition at 17.2 ms
and 19.7 ms. A high readout bandwidth of 425 Hz/pixel was used to
reduce off-resonance artefacts (Helms and Dechent, 2009). To speed
up data acquisition, parallel imaging with a speed up factor of 2 was
used in the phase-encoded direction (anterior-posterior) using the
generalized auto-calibrating partially parallel acquisition algorithm.
A partial Fourier acquisition (6/8 sampling factor) was used in the
partition direction (left-right). The total scanning time of the MPM
protocol was approximately 25 minutes.

To obtain quantitative maps, the data were processed in the
Statistical Parametric Mapping SPM8 framework (Wellcome Trust
Centre forNeuroimaging, London)usingbespokeMATLAB tools (The
Mathworks Inc, Natick, MA, USA). Examplemaps are shown in Fig.1.
In brief, regression of the log signal from the 8 PD-weighted echoes
wasused tocalculateamapofR2*. The setof echoes for eachacquired
weighting were then averaged to increase the signal-to-noise ratio
(Helms and Dechent, 2009). The 3 resulting volumes were used to
calculate MT, R1, and PD* maps as described in Helms et al., 2008a,
2008b; Weiskopf et al., 2013. To maximize the accuracy of the R1
map, inhomogeneity in the flip angle was corrected bymapping the
B1
þ transmit field according to the procedure detailed in Lutti et al.

(2012) and the intrinsically imperfect spoiling characteristics were
correctedusing the approachdescribed byPreibisch andDeichmann
(2009).
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