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a b s t r a c t

TREM and TREM-like receptors are a structurally similar protein family encoded by genes clustered on
chromosome 6p21.11. Recent studies have identified a rare coding variant (p.R47H) in TREM2 that confers
a high risk for Alzheimer’s disease (AD). In addition, common single nucleotide polymorphisms in this
genomic region are associated with cerebrospinal fluid biomarkers for AD and a common intergenic
variant found near the TREML2 gene has been identified to be protective for AD. However, little is known
about the functional variant underlying the latter association or its relationship with the p.R47H. Here,
we report comprehensive analyses using whole-exome sequencing data, cerebrospinal fluid biomarker
analyses, meta-analyses (16,254 cases and 20,052 controls) and cell-based functional studies to support
the role of the TREML2 coding missense variant p.S144G (rs3747742) as a potential driver of the meta-
analysis AD-associated genome-wide association studies signal. Additionally, we demonstrate that the
protective role of TREML2 in AD is independent of the role of TREM2 gene as a risk factor for AD.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Genome-wide association studies (GWAS) are a very powerful
approach for identification of novel loci associated with disease
status or other complex traits. However, these single nucleotide
polymorphisms (SNPs) are usually not the functional variants
driving the association and, in many cases, regional linkage
disequilibrium (LD) prevents identification of a single candidate
gene in the region. Often, additional studies are required to
demonstrate unambiguously that the gene and/or variant impli-
cated in disease risk is functionally related to pathogenesis.

Recently, the International Genomics of Alzheimer’s Project
(IGAP) identified 11 new loci (p < 10�8) associated with risk for
Alzheimer’s disease (AD), and 13 additional suggestive loci (p value
between10�6 and 10�8) (Lambert et al., 2013). Among the latter
group, there is an inter-genic SNP (rs9381040; p < 6.3 � 10�7)
located 5.5 Kb downstream from TREML2 and 24 Kb upstream from
TREM2. The TREM and TREM-like receptor genes clustered on chro-
mosome 6p21.1 (Ford and McVicar, 2009) have different patterns of
LD among them (Cruchaga et al., 2013). This genomic region has
previously been implicated in genetic risk for AD (Benitez et al.,
2013; Bertram et al., 2013; Cruchaga et al., 2013; Guerreiro et al.,
2013; Jonsson et al., 2012; Reitz and Mayeux, 2013). A low fre-
quencymissense variant inTREM2 (p.R47H,minorallele frequency¼
0.003) was reported to substantially increase risk for AD (Benitez
et al., 2013; Guerreiro et al., 2013). SNPs in this region were also
found to be associatedwith a cerebrospinalfluid (CSF) biomarker for
AD (phospho-tau181 levels) (Cruchaga et al., 2013). Because of the
design of the IGAP study (a meta-analysis) and the low frequency of
the TREM2 variant, it was not possible to determine whether the
GWAS signal of this variant (rs9381040) was independent of the
TREM2-p.R47H variant. In this study, we used exome-sequencing
data to identify the most likely functional variant in TREML2
responsible for the GWAS signal and to determine whether this
signal is independent of TREM2-p.R47H (rs75932628) variant.

2. Methods

2.1. Exome sequencing Knight-Alzheimer’s Disease Research Center
(ADRC)

Enrichment of coding exons and flanking intronic regions was
performed using a solution hybrid selection method with the Sure-
Select human all exon 50 Mb kit (Agilent Technologies, Santa Clara,
CA, USA) following the manufacturer’s standard protocol on 46 un-
related AD cases and 39 unrelated controls from the Knight-ADRC.

This was performed by the Genome Technology Access Center at
Washington University in St Louis (https://gtac.wustl.edu/). The
capturedDNAwas sequenced by paired-end reads on the HiSeq 2000
sequencer (Illumina, San Diego, CA, USA). Raw sequence reads were
aligned to the reference genome National Center for Biotechnology
Information (NCBI) 36/hg18 by using Novoalign (Novocraft Technol-
ogies, Selangor, Malaysia). Base and/or SNP calling was performed
using SNP SAMtools (Li et al., 2009). SNP annotation was carried out
using version 5.07 of SeattleSeq Annotation server (see URL) (Benitez
et al., 2011). On average, 95% of the exome had fold coverage >8.

2.2. UK-National Institute on Aging (UK-NIA) Dataset

A description of the UK-NIA dataset can be found in Guerreiro
et al. (2013). Briefly, this dataset includes whole-exome
sequencing data from 143 AD cases and 183 controls (Table 1).

2.3. Alzheimer’s disease genetic consortium methods

Data used in the preparation of this articlewere obtained from the
Alzheimer’s disease genetic consortium (ADGC). A description of the
samples included in the study as well as the methods used can be
found inNaj et al. (2011). Imputeddata from10,067ADcasesand9606
controls from the ADGC were used in this study (Naj et al., 2011).
Genome-wide imputation was performed per cohort using MACH
software with HapMap phase 2 (release 22) CEPH Utah pedigrees
reference haplotypes and genotype data passing quality control as
inference. Imputation quality was determined as r2 and only SNPs
imputed with r2 � 0.50 were included in the analysis. A multivariate
logistic regressionwasperformedtoevaluate theassociationbetween
genetic markers and risk for late-onset AD (LOAD) adjusting for age,
gender, population substructure, and study-specific effects.

2.4. For use of genetic and environmental risk for Alzheimer’s
disease genotype data from “the 610 group”

Data used in the preparation of this article were obtained from
the Genetic and Environmental Risk for Alzheimer’s disease (GERAD)
Consortium. The imputed GERAD sample comprised 3177 AD cases
and 974 healthy elderly (age>70) control subjects with available age
and gender data. Cases and elderly screened control subjects were
recruited by the Medical Research Council (MRC) Genetic Resource
for AD (Cardiff University; Institute of Psychiatry, London; Cambridge
University; Trinity College Dublin), the Alzheimer’s Research UK
Collaboration (University of Nottingham; University of Manchester;
University of Southampton; University of Bristol; Queen’s University
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