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a b s t r a c t

Computational anatomy with magnetic resonance imaging (MRI) is well established as a noninvasive
biomarker of Alzheimer’s disease (AD); however, there is less certainty about its dependency on the
staging of AD. We use classical group analyses and automated machine learning classification of standard
structural MRI scans to investigate AD diagnostic accuracy from the preclinical phase to clinical de-
mentia. Longitudinal data from the Alzheimer’s Disease Neuroimaging Initiative were stratified into 4
groups according to the clinical statusd(1) AD patients; (2) mild cognitive impairment (MCI) converters;
(3) MCI nonconverters; and (4) healthy controlsdand submitted to a support vector machine. The ob-
tained classifier was significantly above the chance level (62%) for detecting AD already 4 years before
conversion from MCI. Voxel-based univariate tests confirmed the plausibility of our findings detecting a
distributed network of hippocampal-temporoparietal atrophy in AD patients. We also identified a sub-
group of control subjects with brain structure and cognitive changes highly similar to those observed in
AD. Our results indicate that computational anatomy can detect AD substantially earlier than suggested
by current models. The demonstrated differential spatial pattern of atrophy between correctly and
incorrectly classified AD patients challenges the assumption of a uniform pathophysiological process
underlying clinically identified AD.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recent advances in computer-based diagnosis making use of
structural magnetic resonance imaging (sMRI) andmachine learning
methods provide evidence of sufficient accuracy in discriminating
Alzheimer’s disease (AD) patients not only from healthy controls but
also from other common types of dementia (Davatzikos et al., 2008b;
Dukart et al., 2011a, 2012; Fan et al., 2008; Kloppel et al., 2008a,
2008b). For the clinically and neuroscientifically pertinent case of
early AD detection, support vector machine (SVM) classification and
other machine learning studies tapping into the preclinical phase
of AD convincingly demonstrate the potential for reliable early

diagnosis (Casanova and Hsu, 2012; Davatzikos et al., 2008a;
Devanand et al., 2007; McEvoy et al., 2009; Misra et al., 2009;
Modrego, 2006). Two limitations applying to most of the previous
studies are the tuning of the classifiers to specific cohorts and with
respect to cross-validation. Both restrict their generalizability to the
general population. Tuning of a classifier to achieve a high accuracy
for detection of mild cognitive impairment (MCI) patients might
result in a substantial drop in accuracy when applying the same
classifier to AD patients. Similarly, the tuning of a classifier to achieve
high cross-validation accuracies might substantially increase the risk
of overfitting the classification model to the particular dataset used
in the study therewith providing an overoptimistic estimation for the
accuracy of the method when applied to a general population.

Despite the progress in the field of computer-based AD detection,
our knowledge about the capability of sMRI for early diagnosis even
before the first manifestation of clinical signs is still very limited. The
most recent model of brain anatomyederived biomarker in AD (Jack
et al., 2010) suggested a protracted progression of atrophy compared
with functional changes as observed by [F18]fluorodeoxyglucose
positron emission tomography. In contrast, other prospective studies
provided evidence that sMRI measurements may contain informa-
tion of ongoing disease-related process already before clinical
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manifestation of cognitive decline (Dickerson and Wolk, 2012;
Quiroz et al., 2012; Smith et al., 2008). However, these studies did
not test the predictive power of sMRI information to detect AD in
untested subjects or cross-validation. Therefore, there is a pressing
need to investigate the timescale of disease-related structural brain
changes in AD not only to advance our understanding of the disorder
but also to provide better tools for early diagnosis when neuro-
protection is possible. Another related aspect is that the application
of multivariate pattern classification techniques for early AD detec-
tion produces a high proportion of erroneous predictions for con-
version from MCI to AD (Ewers et al., 2010; Misra et al., 2009). Thus,
the secondary aim of our study is to investigate if false predictions
are because of random noise or deterministic atrophy pattern.

We systematically address the questions of timescale of disease
detection and potential causes of erroneous prediction while aim-
ing to overcome the aforementioned limitations. We first adopt a
pragmatic strategy testing whether AD-related atrophy is already
detectable several years before conversion followed by in-depth
investigation of atrophy patterns comparing incorrectly and
correctly diagnosed AD, MCI converting to AD during the follow-up
(MCI converters [cMCI]), MCI nonconverters (ncMCI), and healthy
control subjects. To this end, we apply classical mass-univariate
voxel-based analysis paralleled by machine learning classification
using SVMs.

2. Methods

2.1. Subjects

To evaluate temporal sensitivity of sMRI data for early detec-
tion of AD, we used 1.5-T T1-weighted images from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI, http://www.
adni-info.org/) of all available AD, cMCI, and ncMCI patients and

healthy controls who had baseline and at least 2 years of follow-up
MRI scans.

The AD patient and control subject data were split into a dataset
used for SVM classifier training and another for diagnosis (Tables 1
and 2). Critically, the cMCI (Table 3) and ncMCI (Table 2) data were
used for diagnosis only. Baseline and follow-up scans after 6, 12, 24,
36, 48, and 60 months, if available, were downloaded from the
ADNI database along with the corresponding clinical information.
All the data available in ADNI1 and ADNI-GO studies were used for
subsequent evaluation. The diagnosis of AD was based on NINCDS/
ADRDA (National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association) criteria (McKhann et al., 1984). Exclusion
criteria were the presence of any significant neurologic disease
other than AD, history of head trauma followed by persistent
neurologic deficits or structural brain abnormalities, psychotic
features, agitation or behavioral problems within the previous 3
months, or history of alcohol or substance abuse. The study was
conducted according to the Declaration of Helsinki. Written
informed consent was obtained from all participants before
protocol-specific procedures were performed.

The ADNI was launched in 2003 by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bioengi-
neering, the Food and Drug Administration, private pharmaceutical
companies, and nonprofit organizations, as a $60 million, 5-year
public-private partnership. The primary goal of ADNI has been to
test whether sMRI, positron emission tomography, other biological
markers, and clinical and neuropsychological assessments can be
combined to measure the progression of MCI and early AD. Deter-
mination of sensitive and specific markers of very early AD pro-
gression is intended to aid researchers and clinicians to develop
new treatments, monitor their effectiveness, and lessen the time
and cost of clinical trials. The Principal Investigator of this initiative

Table 1
Subject group characteristics

Training set Testing set ANOVA

AD Control subjects AD Control subjects ncMCI cMCI F, df, p

n 54 54 54 83 61 142 d

Age (y) (mean � SD) 74.4 � 8.3 74.6 � 5.5 75.8 � 6.9 75.3 � 5.0 74.0 � 7.6 74.0 � 7.0 0.8, 5, 0.544
Gender (M/F) 31/23 29/25 25/29 40/43 45/16 93/49 d

MMSE (mean � SD) 23.1 � 1.9 29.0 � 1.1 23.4 � 2.1 29.3 � 0.8 27.5 � 1.9 26.7 � 1.7 166.5, 5, <0.001
Follow-up time (y) (mean � SD) 2.1 � 0.2 3.3 � 0.7 2.8 � 0.4 3.8 � 1.0 3.4 � 0.9 3.5 � 0.9 d

Key: AD, Alzheimer’s disease; ANOVA, analysis of variance; cMCI, mild cognitive impairment (converters); df, degree of freedom; F, female; M, male; MMSE, mini-mental state
examination; ncMCI, mild cognitive impairment (nonconverters); SD, standard deviation.

Table 2
Follow-up testing group characteristics

Baseline 1 y 2 y 3 y 4 y

Control subjects
n 42 42 37 38 14
Age (mean � SD) 76.5 � 4.7 77.1 � 4.7 77.7 � 5.1 79.2 � 4.4 81.8 � 4.4
Gender (M/F) 18/24 18/24 16/21 17/21 8/6
MMSE (mean � SD) 29.2 � 0.8 29.3 � 1.0 29.4 � 0.9 29.1 � 1.3 29.5 � 1.1

AD
n 54 53 54 d d

Age (mean � SD) 76.7 � 7.0 77.1 � 6.7 78.8 � 7.0 d d

Gender (M/F) 25/29 25/28 25/29 d d

MMSE (mean � SD) 23.4 � 2.1 22.4 � 3.7 19.2 � 5.8 d d

ncMCI
n 61 61 61 44 d

Age (mean � SD) 75.1 � 7.7 75.7 � 7.7 76.8 � 7.6 79.0 � 7.4 d

Gender (M/F) 45/16 45/16 45/16 34/10 d

MMSE (mean � SD) 27.5 � 1.9 27.4 � 2.3 27.0 � 3.1 27.3 � 2.1 d

Key: AD, Alzheimer’s disease; cMCI, mild cognitive impairment (converters); F, female; M, male; MMSE, mini-mental state examination; ncMCI, mild cognitive impairment
(nonconverters); SD, standard deviation.
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