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h i g h l i g h t s

� An improved multi-objective optimization model for WWTP optimization.
� Simultaneous optimization of treatment cost and effluent quality.
� BP algorithm was applied to determine decision factors according to requirement.
� More flexible and precise optimization of a full-scale WWTP was achieved.
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a b s t r a c t

An improved multi-objective optimization (MOO) model was established and used for simultaneously
optimizing the treatment cost and multiple effluent quality indexes (including effluent COD, NHþ4 –N,
NO�3 –N) of a municipal wastewater treatment plant (WWTP). Compared with previous models that were
mainly based on the use of fixed decision factors and did not taken into account the treatment cost, this
model introduces a relationship model based on back propagation algorithm to determine the set of deci-
sion factors according to the expected optimization targets. Thus, a more flexible and precise optimiza-
tion of the treatment process was allowed. Moreover, a MOO of conflicting objectives (i.e., treatment cost
and effluent quality) was achieved. Applying this method, an optimal balance between operating cost and
effluent quality of a WWTP can be found. This model may offer a useful tool for optimized design and
control of practical WWTPs.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Water pollution remains a severe problem worldwide, espe-
cially in many developing countries like China (Qu and Fan,
2010; Wu et al., 1999). To reduce the pollutant release and lower
the pollution burden of natural water bodies, increasingly strin-
gent discharge standards have been adopted in China in the past
decade (Li et al., 2012). However, this has also significantly in-
creased the treatment costs. Therefore, how to balance the treat-
ment performance and cost becomes a critical issue for operation
of wastewater treatment plants (WWTPs), which necessitates a
multi-objective optimization (MOO).

MOO is a common problem encountered in many practical pro-
cesses. Although the basic theory of MOO has been well estab-
lished, its practical implementation still faces many challenges

(Marler and Arora, 2004; Tan et al., 2002). So far, most of the opti-
mization works are based on process simulation (Sidiras et al.,
2011; Yang et al., 2013) and single objective optimization (Fang
et al., 2011; Zafar et al., 2012), which has many limitations. Taking
wastewater treatment process as an example, when certain water
quality index (e.g., effluent chemical oxygen demand (COD) con-
centration) is optimized, others indexes such as nitrogen removal
might become even worse. Therefore, the optimal solution of
MOO problems is not one single solution but a solution set, re-
ferred to as Pareto set. Most of the modern multi-objective algo-
rithms to date, such as multiple objectives genetic algorithm,
non-dominated sorting genetic algorithm, Niched Pareto genetic
algorithm and multiple objective particle swarm optimization,
are evolved from Pareto multi-objective evolutionary algorithms
(Maneeratana et al., 2004; Tripathi et al., 2007). The Pareto sets
are significantly affected by the decision factors in the algorithm.
However, the problem is that an accurate determination of the
decision factors is difficult, due to the fuzzy relationships between
the decision factors and optimal objects in practical systems. This
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is especially true when the optimization objectives are in conflict
with each other (Lamas, 2013; Xie et al., 2011; Yetilmezsoy, 2012).

In a previous study (Xie et al., 2011), a MOO model was estab-
lished, based on an integrated use of the activated sludge model
(ASM) and support vector regression, to simultaneously optimize
several effluent quality indexes of a WWTP. This model took into
account multiple operating parameters without need for compli-
cated calculation, and successfully estimated a set of optimal oper-
ating parameters for improving effluent quality. However, this is
not a dynamic model. If the optimization requirements are chan-
ged, all the calculations would have to be repeated. In addition, it
is not suitable for MOO problems with conflicting optimization
objectives. In this study, a further improvement of the model
was made by incorporating back propagation (BP) algorithm to
identify the relationships between decision factors and optimiza-
tion objectives. In this way, appropriate operating parameters
can be obtained precisely according to the expected optimization
targets. Furthermore, a simultaneous optimization of effluent qual-
ity and treatment cost of a WWTP was achieved for the first time.

2. Methods

2.1. Sketch of the municipal wastewater treatment plant

The model was developed based on the data from a full-scale
WWTP in Hefei, China, with a typical A2/O process. After a primary
clarifier, there are two parallel lines of treatment units, each con-
sisting of an anaerobic tank, an anoxic tank and an aerobic tank.
The solids retention time (SRT) of the system is 12 d, while the
hydraulic retention times (HRTs) of the tanks are 2, 5, and 8 h,
respectively. The internal recirculation ratio is 300%. The average
concentrations of mixed liquor volatile suspended solids (MLVSS)
and mixed liquor suspended solids (MLSS) are 2300 and
5230 mg/L, respectively. The average sludge volume index (SVI)
is 105 mL/g. The average influent quality is: COD 210 mg/L,
NHþ4 –N 20 mg/L and suspended solids 206 mg/L. The COD, NHþ4 –N,
total nitrogen (TN), NO�3 –N, total phosphorus (TP), MLSS, MLVSS
and SVI were measured following the Standard Methods (APHA,
1995).

2.2. Multi-objective optimization methods

The MOO model in this study inherits a previous model by
retaining the series of Mathematical model–Surrogate model–
Optimization algorithm (Xie et al., 2011), but adds a relationship
model to correlate the optimal objectives with the decision factors.
Framework of the methods employed in this MOO model is shown
in Fig. 1. In brief, an ASM2D model was firstly used to generate the
influent and effluent data sets based on a wide range of operating
conditions (243). These data sets formed a database for MOO in the
next steps (Fig. 1, step 1). Second, before running the optimization
algorithm, a surrogate model (support vector machine (SVM) in
this case) of the ASM2D was created (Fig. 1, step 2). Third, decision
factors are the key to balance the different objectives in a MOO
problem, but are always fuzzy in traditional algorithms. Hence,
to allow a better optimization of the multiple (even conflicting) in-
dexes, a relationship model was developed to correlate the effluent
data with the decision factors.

The optimization targets include the effluent COD, NHþ4 –N,
NO�3 –N concentrations and the treatment cost. The parameters to
be optimized include HRTs and SRTs of the anaerobic, anoxic and
aerobic tanks, as well as the internal recirculation ratio.

2.2.1. Mathematical model and dataset
ASMs have been widely used to simulate various activated

sludge-based wastewater treatment processes (El Shorbagy et al.,

2013; Fenu et al., 2010; Henze, 2000). In this study, ASM2D was
used for the simulation using the AQUASIM software (Reichert,
1994). The simulation was performed under different operating
parameters, and the effluent quality and treatment costs were cal-
culated. The operating parameters, each has three possible values,
were used with different combinations. Thus, in total 35 = 243 col-
umns of data sets were obtained. Dynamic data were generated
from simulation based on each of the 243 set of operating param-
eters. Here, the average concentration data (calculated from the
many dynamic data) was used, so that simple calculation can be al-
lowed and more effective and reliable process control can be ap-
plied later based on the optimization. Thus, 243 sets of effluent
quality data including average effluent concentrations of COD,
NHþ4 –N and NO�3 –N were predicted by ASM2D. These data sets
were used for optimization in the next step.

The wastewater treatment cost on a per day basis can be esti-
mated as:

c ¼ panaerobic � hanaerobic � eþ panoxic � hanoxic � eþ paerobic � haerobic

� eþ prefluent � hrefluent � eþ F=SRT ð1Þ

where c is the treatment cost per day ($), panaerobic, panoxic, paerobic and
prefluent are the power consumption (kW) of the anaerobic tank, an-
oxic tank, aerobic tank and back flow, respectively, while hanaerobic,
hanoxic, haerobic and hrefluent are the corresponding HRTs (hour); e is
the electricity price ($); F is the total disposal cost for all the sludge
in the WWTP ($), and F/SRT is the cost for the disposal of excess acti-
vated sludge ($) per day.

The following procedure were adopted to obtain the MOO solu-
tion set for the WWTP. First, the effluent quality indexes were nor-
malized before the optimization:

ciðjÞ ¼
CiðjÞ �min Ci

max Ci �min Ci
ð2Þ

where, Ci is the concentration of the effluent quality index i, Ci(j) is
the jth data set of Ci.

Decision factor is the key to balance the different optimization
objectives in a MOO problem. For determination of decision factor,
it is essential to compare the importance of each index and weigh
them. With the set of decision factor, the comprehensive index can
be calculated as:

dfi ¼
Xm

j¼1

dfi;j � ai;j ð3Þ

where dfi is the comprehensive index of the ith set, m is the number
of the effluent quality indexes, i is the ith set of decision factor, ai,j is
the normalized value of jth index and dfi,j is its decision factor in the
ith set.

2.2.2. Surrogate model and optimization algorithm
Surrogate models, especially machine learning methods, have

been widely used for optimization of industrial design with
reduced calculation time (Koziel and Bandler, 2007; Qian et al.,
2006). One common machine learning method is SVM (Cortes
and Vapnik, 1995), which can be used to correlate the input and
output variables (Matic et al., 2012). In this study, SVM is used to
simplify the calculation.

The operating parameter data sets were used as the input data
of SVM, and the corresponding comprehensive indexes calculated
from Eq. (3) were used as the output data. In total, 243 groups of
input data set were employed. With this model, the optimal sets
of operating parameters were then calculated. Genetic algorithm,
which is based on the concepts of biologic inheritance and evolu-
tion for optimization, was used here as the optimization algorithm.
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