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Recent semantic space models learn vector representations for word meanings by observing statistical
redundancies across a text corpus. A word's meaning is represented as a point in a high-dimensional
semantic space, and semantic similarity between words is quantified by a function of their spatial
proximity (typically the cosine of the angle between their corresponding vector representations).
Recently, Griffiths, Steyvers, and Tenenbaum (2007) demonstrated that spatial models are unable to
simulate human free association data due to the constraints placed upon them by metric axioms which
appear to be violated in association norms. However, it is important to note that free association data is
the product of a retrieval process operating on a semantic representation, and the failures of spatial
models are likely be due to mistaking the similarity metric (cosine) for an appropriate process model of
the association task—cosine is not what people do with a memory representation. Here, we test the
ability of spatial semantic models to simulate association data when they are fused with a simple Luce
choice rule to simulate the process of selecting a response in free association. The results provide an
existence proof that spatial models can produce the patterns of data in free association previously
thought to be problematic for this class of models.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A longstanding belief in theories of lexical semantics, dating
back at least to Osgood (1952) is that words can be represented as
points in a multidimensional semantic space. Similarity between
word meanings is then defined as some function of their distance in
space. This classic notion of mental space has had an obvious
impact on modern computational semantic space models, such as
Latent Semantic Analysis (LSA; Landauer & Dumais, 1997). Models
such as LSA borrow techniques from linear algebra to infer the
semantic representation for words from their contextual co-
occurrences in linguistic corpora. In the resulting space, a word's
meaning is represented by a vector over latent dimensions. Inter-
word similarity is based on Euclidean geometry: Words that are
more similar are more proximal in the learned space. Virtually all
distributional models of semantic memory adhere to the spatial
notion of semantics (for a review, see Jones, Willits, & Dennis,
2015), including recent popular neural embedding models
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(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013).

In contrast to spatial models, the popularity of probabilistic
models of cognition has led to the development of Bayesian models
of semantic representation, such as the LDA-based Topic models
explored by Griffiths et al. (2007). In a Topic model, a word's rep-
resentation is a probability distribution over latent semantic
“topics.” When a word is processed, its semantic representation is
the predicted probability across latent topics. Hence while LSA
represents a word as a point in high-dimensional space and re-
quires a spatial metric of similarity between two words, a Topic
model represents a word as a probability distribution and com-
putes the association between words as the probability of one word
given the other. This allows Topic models to make very different
predictions depending on which word is being conditioned upon,
in contrast to LSA in which similarity is identical regardless of
which word is “first.” In addition, the issue of whether humans
represent meaning as a coordinate in space or as a conditional
probability is a fundamental question in cognitive science, and has
implications for downstream models that make use of these
representations.

Tversky (1977) has noted that spatial models must respect
several metric axioms. Firstly, in a metric space the distance be-
tween a point and itself must be zero by any Euclidean metric,
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d(x,x) = 0 (non-negativity). Secondly, distance must respect sym-
metry: d(x,y) = d(y,x). Thirdly, distance must respect the triangle
inequality: If x and y are proximal and y and z are proximal, then x
and z are likely to be proximal points as well (specifically,
d(x,z) < d(x,y) +d(y,z)). As Tversky and Gati (1982) have
demonstrated, human judgments of similarity routinely violate
these axioms—specifically, symmetry and the triangle inequality.
Tversky used human violations of the metric axioms to argue
against spatial models of similarity, and instead proposed an ad-
ditive feature comparison model. The spatial debate, however, has a
long history in cognitive science, with Tversky's work being fol-
lowed by explanations of how metric spaces could produce viola-
tions of metric axioms (e.g., Krumhansl's (1978) notion of density or
Holman's (1979) similarity and bias model).

Griffiths et al. (2007) note that human free association norms
also violate metric axioms, making them problematic for semantic
space models such as LSA. In a free association task, the participant
is asked to respond to a cue word with the first associated word that
comes to mind (Nelson, McEvoy, & Schreiber, 2004). Word associ-
ation norms contain a significant number of asymmetric associa-
tions: For example, the probability of generating baby as a response
to stork as a cue is much greater than the reverse. Part of this effect
is due to a bias to respond with a high frequency target indepen-
dent of the cue, but part appears to be due to some sort of asym-
metry in the computation of similarity. In addition, word
association norms contain apparent violations of the triangle
inequality axiom: To use the example from Griffiths et al., asteroid is
strongly associated with belt, and belt is strongly associated with
buckle, but asteroid and buckle have no association. Finally, Griffiths
et al (see also Steyvers & Tenenbaum, 2005). have demonstrated
that association norms contain neighborhood structure that is
incompatible with spatial models. If one constructs an associative
network with nodes representing words and connecting edges
based on nonzero association probabilities, the resulting networks
are scale-free: they have power law degree distributions and high
clustering coefficients.!

Griffiths et al. (2007) note, however, that probabilistic repre-
sentations are not subject to the same metric restrictions as spatial
representations, and they provide an elegant demonstration of how
Topic models can naturally account for the qualitative nature of
violations in asymmetry and the triangle inequality that LSA
cannot. Griffiths et al. further demonstrate that while LSA (based on
a thresholded cosine) cannot reproduce the scale-free and small-
world network structure seen in word association norms, this
structure naturally emerges in a Topic model.

However, it is important to note that an observable behavior
such as free association is the product of a cognitive process
operating on a memorial representation (Anderson, 1978; Estes,
1975). This notion is ubiquitous in cognitive science. For example,
Nosofsky (1986) uses a spatial representation of stimuli, but the
complex classification behavior of his model is the result of
applying a simple choice rule to this spatial representation, not
spatial distance itself. Similarly, semantic space models are models
of memory structure; the structural model should not be expected
to simulate a complex behavior like memory retrieval without the
benefit of a process account to explain how the memory structure is
used in a particular task. While the cosine between two word
vectors is often used as a measure of their semantic similarity, it is a
measure of the similarity of memory structures rather than an

1 Utsumi (2015) has revisited the Steyvers and Tenenbaum (2005) work and
demonstrated that while scale-free and small-word structure is unobtainable by
LSA, several other variants of the model, all spatial models, naturally produce the
correct structure from association norms.

appropriate process model of the task—a cosine is not what people
do in a task, and should not be used as an estimate of behavioral
data (see Jones, Hills, & Todd, 2015). A cosine, or similar metric,
should be the input to a process model if one is interested in
simulating behavioral data. This also enhances the models’ gener-
alizability across different tasks that tap semantic structure, and is
particularly appealing given the low correlation in responses be-
tween different tasks thought to utilize the same semantic struc-
ture (Maki & Buchanan, 2008), and the fact that different semantic
space models give the best fit to different behavioral tasks even
though all tasks are thought to tap the same semantic memory
structure (Mandera, Keuleers, & Brysbaert, 2017).

Griffiths et al. (2007, p. 224) imply that a “more complex” spatial
metric based on LSA (similar to Nosofsky's 1986, 1991 use of a
similarity-choice function) could potentially account for the metric
axiom violations in association norms. We return to the issue of
complexity with regard to spatial and probabilistic models in the
discussion. The bulk of this paper will be focused on evaluating this
suggestion by fusing spatial semantic models with a parameter-free
version of Luce’s (1959) similarity-choice model to evaluate their
ability to account for the problematic data identified by Griffiths
etal. In doing so, we provide an existence proof that semantic space
models can indeed produce asymmetries, violations of the triangle
inequality, and scale-free network structure with an appropriate
process rule. It is premature to reject spatial models of semantic
representation based on violations of metric axioms in association
data.

2. A generic spatial choice model

In this paper, we evaluate the application of Luce's (1959) classic
choice rule to simulate the cognitive process involved in the task of
free association when applied to three (metric) semantic space
models, gradually increasing in complexity. Although similarity and
distance in the semantic spaces respect the metric axioms, the
behavior of the choice rule applied to these spaces need not (cf.
Nosofsky, 1991). The Luce choice rule was selected as our generic
output model here due to its ubiquity in models of cognitive phe-
nomena—it has been successfully applied to choice behavior
ranging from low-level neural networks to high-level economic
models of group choice behavior.

The Luce choice rule simulates how humans select from possible
choice alternatives given a stimulus similarity space, governed by
probabilities conditioned on the choice set. Hence, its input is
metric space, but its output is a probability of a given response.
Given a set of stimulus similarities (where similarity is defined as
an inverse monotonic function of psychological distance) the Luce
choice rule states that the probability of responding to stimulus S;
with response R; is defined as:
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P(R;|Si) =

where f; is the response bias for item j, and 7;; is the similarity
between stimuli i and j. Given the restrictions of metric spaces, the
total probability over all responses sums to one. Most applications
of the choice rule include exponential scaling of similarity based on
Shepard's (1987) universal law of distance and perceived similarity.
Hence, this general formula is often referred to as the Shepard-Luce
choice axiom:
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