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a b s t r a c t

Automated segmentation of the brain is challenging in the presence of brain pathologies such as white
matter hyperintensities (WMH). A late-life depression population was used to demonstrate the effect of
WMH on brain segmentation and normalization. We used an automated algorithm to detect WMH, and
either filled them with normal-appearing white-matter (NAWM) intensities or performed a multi-
spectral segmentation, and finally compared the standard approach to the WMH filling or multi-spectral
segmentation approach using intra-class correlation coefficients (ICC). The presence of WMH affected
segmentations for both approaches suggesting that studies investigating structural differences in po-
pulations with high WMH should account for WMH. We also investigated how functional data contrasts
are affected using normalization between the standard compared to fill and multi-spectral approach. We
found that the functional data was not affected. While replication with a larger sample is needed, this
study shows that WMH can significantly affect the results of segmentation and these areas are not
limited to those affected by WMH. It is clear that to study gray matter differences that some correction
should be made to account for WMH. Future studies should investigate which methods for accounting
for WMH are most effective.

& 2016 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

White matter hyperintensities (WMH) are areas in the white
matter of the brain that have higher intensity values on a T2-
weighted magnetic resonance (MR) scans compared to normal ap-
pearing white matter (NAWM). Usually appearing in mid-to-late-
life, WMH are attributed to degenerative changes of long penetrat-
ing arteries (Breteler et al., 1994), resulting in demyelination, gliosis
and axonal degeneration (Ovbiagele and Saver, 2006). WMH can
have a variety of pathologies and are associated with several neu-
rological disorders (e.g. multiple sclerosis). In older populations, the
prevalence of white matter disease is highly variable, with reports
indicating it affects from 5% to 90% of the population, depending on
the study design and study population (Xiong and Mok, 2011).
WMH are more common in populations 60 years and older and also
are more common in women than in men (de Leeuw et al., 2001).

Although WMH appear as hyperintense on T2-weighted ima-
ges, they are hypointense (dark) on the T1-weighted images. These
dark spots on the T1-weighted images are not typically considered
when using automated image processing methods. For instance,
studies exploring structural brain changes rely on tissue segmen-
tation algorithms. These algorithms can be affected by the pre-
sence of WMH. The process of tissue classification in presence of
WMH is often a challenging task. Thus, the presence of WMH can
result in tissue misclassification if it is not taken into account in
the segmentation algorithm, as it has been reported in Levy-
Cooperman et al. (2008). Most neuroimaging software platforms
have been developed for populations with healthy brains and
therefore there is only a low risk of tissue misclassification since
the prevalence of WMH is very low or non-existent in younger
populations. Therefore, incorrectly classifying the voxels as gray
matter due to lower intensities on the T1 is not a significant issue
in healthy subjects.

Further, it is often necessary to coregister all subject volumes
into a common template space. This step can be affected by the
presence of WMH (Eloyan et al., 2014) as atrophy and WMH can
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interfere with proper classification of the brain tissue. This inter-
feres with proper coregistration to template space, especially in
algorithms that rely on a unified segmentation/normalization
algorithm.

WMH filling (Battaglini et al., 2012; Chard et al., 2010; Eloyan
et al., 2014; Magon et al., 2014; Sdika and Pelletier, 2009; Valverde
et al., 2014) is a previously established method used to alleviate
the effect of WMH on segmentation/coregistration algorithms.
After identifying WMH (using an automated method), they are
filled with intensities of NAWM in the structural image. This al-
lows for these regions to be segmented as white matter instead of
being misclassified (usually as gray matter). Another approach
utilizes a multi-spectral segmentation by using information from a
T1-weighted and T2-weighted image. AWMH prevalence map can
be input to identify regions most greatly affected by WMH. This
allows for classification of these tissues and models the WMH as a
separate tissue class.

Proper classification of brain tissue is required in order for the
statistical analysis to be valid in populations with age-specific
diseases or other diseases that can severely affect brain tissue. In
this study, we used a group of older adults enrolled in a study of
late-life depression (LLD). As depression in older adults is asso-
ciated with the presence of small vessel ischemic disease (Alex-
opoulos, 2006; Taylor et al., 2013; Tudorascu et al., 2014) this
group is likely to have a significant burden of WMH, and thus is
well-suited for testing how WMH burden interfere with tissue
segmentation and registration. In general, aging populations tend
to have higher WMH burden, but patients with LLD often have an
even higher WMH burden compared to age-matched healthy
controls (Herrmann et al., 2008). The main purpose of our work
was to describe the effect of WMH on segmentation. We however
did not investigate the efficacy of the methods used and only in-
vestigated the effect of some correction on the results. We also
aimed to look at the effect of WMH on functional data coregis-
tration/normalization to a standard (Montreal Neurological In-
stitute, MNI) space. Thus, we examined (via intraclass correlation
coefficients, ICC) the differences between the standard approach,
which does not account for WMH, and the WMH filling approach
as well as the multi-spectral segmentation approach. This will
indicate the effect each method has on the previously uncorrected
approach and does not indicate accuracy/efficacy.

2. Methods

2.1. Study design and subjects

The subjects participated in a five-year multi-site study of
treatment of Late Life Depression (LLD) with an imaging compo-
nent added to the Pittsburgh site (Lenze et al., 2015). The Uni-
versity of Pittsburgh IRB approved this study. Subjects were in-
cluded in the LLD study if they were older than 65 years of age,
had major depressive disorder that met DSM-IV criteria (First
et al., 1997), and had Montgomery-Asberg Depression Rating Scale
(MADRS) score greater than 15. Subjects had a mean (std.) adapted
Edinburgh handedness index of 17 (6) (right-handed, 1 missing
subject with self-reported right-handedness) (Oldfield, 1971).
Subjects were excluded if they had a history of mania or psychosis,
alcohol/substance abuse, current use of antidepressant or in-
volvement in mental health treatment, dementia or any neuro-
degenerative disease, prescribed medications used in Alzheimer's
disease, and medical conditions with known significant effects on
mood (e.g. clinical stroke) and neurologic disorders with known
effects on the brain (e.g., multiple sclerosis). After subjects com-
pleted informed consent, a baseline MRI scan was acquired. As
part of the multi-site study, subjects underwent detailed

neurocognitive assessment, a clinical interview, mood and anxiety
assessment, and laboratory testing.

A total of 37 participants signed consent, but four were not
included for the following reasons: withdrawal due to failure to
communicate/failure to comply, or they were deemed (early on) to
no longer have Major Depressive Disorder (MDD). Six were not
included because they either did not have a structural MPRAGE or
FLAIR (see data collection section). A total of 27 subjects were
included in this analysis (mean age 67 (SD¼6) years).

2.2. MRI/fMRI data collection

All scanning was conducted using a 3T Siemens Trio TIM
scanner (VB17) with a 12-channel head coil (parallel imaging)
located at the Magnetic Resonance Research Center at the Uni-
versity of Pittsburgh. The head was immobilized using vacuum
pads to minimize motion artifacts. Multiple imaging sequences
were acquired. A map used to identify WMH was collected, spe-
cifically an axial T2-weighted fluid-attenuated inversion recovery
(FLAIR, TR¼9160 ms, TE¼90 ms, TI¼2500 ms, FA¼150°,
FOV¼256�212, slice thickness¼3 mm, slices¼48, matrix
size¼256�212, no gap). An axial T1-weighted 3D sequence was
collected (TR ¼2300 ms, TE¼3.43 ms, TI¼900 ms, FA¼9 deg,
FOV¼256�224, slice thickness¼1 mm, slices¼176, matrix
size¼256�224, no gap). An axial T2*-weighted BOLD interleaved
acquisition using gradient-echo echoplanar imaging (EPI) was also
collected (TR¼2000 ms, TE¼34 ms, FOV¼256�256, slices¼28,
slice thickness¼4 mm, FA¼90°, matrix size¼128�128, no gap,
117 time points) to measure changes in blood oxygen-level de-
pendent (BOLD) response during the task (see next section). Total
scan time was one hour. Structural scans covered from the bottom
of the cerebellum to the top of the head, whereas functional scans
only covered from midway of the cerebellum to the top of the
head.

2.3. Faces/shapes task

The study used the faces-shapes task to study the effect of
emotional responses to faces (Hariri et al., 2003). We have further
used it to study the effect of WMH on functional coregistration
due to its activation of some subcortical structures that may be
affected by WMH. During the task, subjects are required to select
one of two facial expressions (angry/fearful and neutral) that
match that of a simultaneously presented target expression. As a
control task, subjects matched one of two geometric shapes with a
control shape. The matching task (5 blocks) was interleaved with
4 blocks of the experimental faces task. Each block lasted 24 s and
contains 6 trials lasting 4 s each.

Before the beginning of each block, a brief instruction (“match
emotion” or “match form”) is presented for 2 s. On the faces trials, 12
different images are used, six per block, three of each gender, all
derived from a standard set of pictures of facial affect (Ekman et al.,
1975). In the control condition, six different sets of geometric forms
are used, each set including two geometric shapes. During imaging,
subjects responded with button presses, allowing for determination
of accuracy and reaction time. Stimulus presentation and response
recording were controlled using the E-Prime software package
(Psychology Software Tools, Inc., Pittsburgh, 2002).

2.4. Data processing

All of our preprocessing used Statistical Parametric Mapping
software (SPM 12) (http://www.fil.ion.ucl.ac.uk/spm/) as well as
Python and Matlab programming platforms. The following sec-
tions are ordered temporally, thus each section precedes the fol-
lowing in terms of order of analysis.
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