
Exploring students' computational practice, design and
performance of problem-solving through a visual
programming environment

Po-Yao Chao a, b, *

a Department of Information Communication, Yuan Ze University, Taiwan
b Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taiwan

a r t i c l e i n f o

Article history:
Received 7 September 2015
Received in revised form 24 January 2016
Accepted 25 January 2016
Available online 28 January 2016

Keywords:
Computer programming
Visual problem solving
Students programming patterns

a b s t r a c t

This study aims to advocate that a visual programming environment offering graphical
items and states of a computational problem could be helpful in supporting programming
learning with computational problem-solving. A visual problem-solving environment for
programming learning was developed, and 158 college students were conducted in a
computational problem-solving activity. The students' activities of designing, composing,
and testing solutions were recorded by log data for later analysis. To initially unveil the
students' practice and strategies exhibited in the visual problem-solving environment, this
study proposed several indicators to quantitatively represent students' computational
practice (Sequence, Selection, Simple iteration, Nested iteration, and Testing), computational
design (Problem decomposition, Abutment composition, and Nesting composition), and
computational performance (Goal attainment and Program size). By the method of cluster
analysis, some empirical patterns regarding the students' programming learning with
computational problem-solving were identified. Furthermore, comparisons of computa-
tional design and computational performance among the different patterns of computa-
tional practice were conducted. Considering the relations of students' computational
practice to computational design and performance, evidence-based suggestions on the
design of supportive programming environments for novice programmers are discussed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Programming has been recognized as one of the important competencies that require students to use computational tools
to address real-world problems in the 21st century (Einhorn, 2011; Grover & Pea, 2013; Yen, Wu, & Lin, 2012). Learning
programming is not only a prerequisite for becoming a computer scientist, but it is also necessary for the practice of solving
problems and designing systems (Palumbo, 1990; Robins, Rountree, & Rountree, 2003). Programming requires programmers
to plan solutions to problems, precisely transform the plans into syntactically correct instructions for execution, and assess
the consequent results of executing those instructions (Brookshear, 2003; Deek, 1999; Ismal, Ngah, & Umar, 2010). However,
research revealed that at the conclusion of introductory programming courses, most students have difficulties in decom-
posing problems, developing plans and implementing their plans with programming languages to solve programming

* Department of Information Communication, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li 32003, Taiwan.
E-mail address: poyaochao@saturn.yzu.edu.tw.

Contents lists available at ScienceDirect

Computers & Education

journal homepage: www.elsevier .com/locate/compedu

http://dx.doi.org/10.1016/j.compedu.2016.01.010
0360-1315/© 2016 Elsevier Ltd. All rights reserved.

Computers & Education 95 (2016) 202e215

mailto:poyaochao@saturn.yzu.edu.tw
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compedu.2016.01.010&domain=pdf
www.sciencedirect.com/science/journal/03601315
www.elsevier.com/locate/compedu
http://dx.doi.org/10.1016/j.compedu.2016.01.010
http://dx.doi.org/10.1016/j.compedu.2016.01.010
http://dx.doi.org/10.1016/j.compedu.2016.01.010


problems (Lister et al., 2004; McCracken et al., 2001; de Raadt, 2007; Robins et al., 2003). Some of them lack adequate un-
derstanding of fundamental programming constructs, and most of them lack strategies for transforming programming
problems intoworkable plans and algorithms (Deek,1999; Kessler& Anderson,1986; Li&Watson, 2011; de Raadt, 2007). This
may be because the formal instruction in programming mostly focuses on students' mastery of a general-purpose pro-
gramming language and adopts a programming tool that is intentionally designed for professional programmers (Deek, 1999;
Ismal et al., 2010; Linn & Clancy, 1992; Robins et al., 2003; Xinogalos, 2012). The employment of the general-purpose pro-
gramming language and the professional programming tool often drives the teachers and students to invest their effortsmore
on mastering programming language features than on developing design strategies for solving programming problems
(Brusilovsky, Calabrese, Hvorecky, Kouchnirenko, & Miller, 1997; Deek, 1999; Linn, 1985; Pears et al., 2007).

Numerous studies have been devoted to research on instructional and environmental assistance for programming learning
(Kelleher & Pausch, 2005; Winslow, 1996). Among the studies aiming to devise potential means for enhancing programming,
an alternative approach to engaging students in solving computational problems (Edmonds, 2008) has been recognized as an
effective way of cultivating students' programming constructs and skills (Liu, Cheng, & Huang, 2011; Ring, Giordan, &
Ransbottom, 2008). This method often provides students with computational problems, which are specially designed to
foster specific programming concepts or skills. In a scenario requiring students to solve a computational problem by exer-
cising various programming knowledge and strategies, the students are expected to learn by formulating computer programs
and systematically evaluating the consequent results (Deek,1999). Many studies have also proposed alternative approaches to
the students' difficulties in programming by the use of visual programming environments, such as Scratch and Alice (Cooper,
Dann, & Pausch, 2000; Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010), LighBot and PlayLOGO 3D (Gouws, Bradshaw,
& Wentworth, 2013; Paliokas, Arapidis, & Mpimpitsos, 2011), or objectKarel and Jeroo (Sanders & Dorn, 2003; Xinogalos,
2012). These environments often adopt different visual programming elements that help novice programmers construct
their programs or understand the process of program execution and the state of a problem (Green & Petre, 1996; Kelleher &
Pausch, 2005; Navarro-Prieto & Canas, 2001). Research has revealed that visual programming environments could enhance
novice programmers' engagement in programming tasks and help them demonstrate programming skills and problem
solving strategies during the course of creating digital artifacts or solving programming problems (Cooper et al., 2000; Lye &
Koh, 2014). Although visual programming environments are becoming important and have demonstrated their particular
benefits to assist learning programming and problem solving (Lye & Koh, 2014), little is known about how novice pro-
grammers use a visual programming environment to learn to solve computational problems. Moreover, because constructing
a computer program to solve a computational problem in a visual programming environment requires novice programmers
to manipulate visual programming elements (e.g., control-flow blocks) to formulate and test a design solution to the problem
(e.g., Gouws et al., 2013; Maloney et al., 2010), the programmers' behavior and strategies of solving computational problems
in a visual programming environment may affect their performance of problem solving. Therefore, there is a need to further
explore the novice programmers' behavioral patterns in a visual programming environment and investigate the difference in
their strategies and performance of solving computational problems among different behavioral patterns.

Based on the aforementioned rationale, the purpose of this study is twofold. The first is to develop a visual problem-
solving environment for programming learning and explore how novice programmers use it to learn to solve computa-
tional problems through interacting with the provided visual programming elements. To understand how novice pro-
grammers interact with the proposed environment to solve computational problems, the second purpose is to investigate
novice programmers' visual programming behavior and strategies of computational problem-solving enacted in the visual
problem-solving environment, as well as to examine the performance of computational problem solving among different
patterns of visual programming behavior in computational problem solving activities. To this end, this study aims to answer
the following research questions:

C What are the novice programmers' patterns of visual programming behavior exhibited in a visual programming
environment to solve computational problems?

C Do the novice programmers' computational design and performance of solving computational problems differ in
different patterns of visual programming behavior?

The results of this study may be of interest to interface designers attempting to design a specific programming learning
environment for novice programmers. The results may also particularly interest teachers or educators who design formal
instruction for students to foster their programming strategies (de Raadt, Watson, & Toleman, 2009) or computational
problem solving skills.

2. Related works

2.1. Programming learning in visual programming environments

Many visual programming environments have been developed to provide novice programmers with visual supports in
constructing programs and understanding programming constructs. For example, ToonTalk enables a programming envi-
ronment in which users interact with visual objects, such as birds or cars in a city, to construct programs (Kahn, 1996). These

P.-Y. Chao / Computers & Education 95 (2016) 202e215 203



Download English Version:

https://daneshyari.com/en/article/6834912

Download Persian Version:

https://daneshyari.com/article/6834912

Daneshyari.com

https://daneshyari.com/en/article/6834912
https://daneshyari.com/article/6834912
https://daneshyari.com

