
Exploring the computational thinking effects in pre-university education

Keywords:
Computational thinking
21st century competences
Coding
Pre-university education

a b s t r a c t

Several countries have usually adopted several priorities for developing ICT competences from kinder-
garten to secondary education. Most of them are focused on the development of key competences and/or
coding skills. Although coding may be very attractive for young students and a very good practice or
experience, it could be more interesting to develop students' logical thinking skills and problem-solving
skills throughout programming approaches or computational thinking. This is a very exciting challenge
with lots of possibilities regarding coding, robots, mobiles devices, Arduino-based application, game-
based learning and so on. Thus, it is very important to explore the effect that these experiences have
been taking into the pre-university students, both at primary and secondary education, with a special
focus on the computational thinking as one of the components inside the toolbox to develop a reflexive
and critical education in order to help children to solve problems using the technology with which they
will live daily.

© 2017 Published by Elsevier Ltd.

1. Introduction

We live in a software-driven world (Manovich, 2013) and cur-
rent Society demands skilled professionals for ICT (Information
and Communication Technologies) business sector. A very common
situation in countries with a high rate of unemployment is they
have unfilled positions for engineers and technicians for the indus-
try and digital services. This has caused an increasing approach for
introduce digital or information technology (IT) literacy from the
early beginning of the individual development (Bers, Flannery,
Kazakoff, & Sullivan, 2014; Cejka, Rogers, & Portsmore, 2006;
Kazakoff & Bers, 2012) till the high school courses (Allan, Barr,
Brylow, & Hambrusch, 2010), even in post-secondary institutions
(Astrachan, Hambrusch, Peckham, & Settle, 2009), combining it
with other key competences such as reading, writing and math
skills.

New devices (Alonso de Castro, 2014; Ramírez-Montoya &

García-Pe~nalvo, 2017; S�anchez-Prieto, Olmos-Miguel�a~nez, &
García-Pe~nalvo, 2014), from smartphones and tablets to electronic
learning toys and robots, find new audiences with increasingly
young children (Fonseca Escudero, Conde Gonz�alez, & García-
Pe~nalvo, 2017). This causes new challenges for teachers (S�anchez-
Prieto, Olmos-Miguel�a~nez, & García-Pe~nalvo, 2017), for example
how to define developmentally appropriate activities and content
for children of different ages (Bers et al., 2014).

The most frequent approach to teaching digital literacy has been
to gradually encourage the learning of programming, and the term
code-literacy (diSessa, 2000; Hockly, 2012; Vee, 2013) has been
coined to referrer the process of teaching children programming
tasks, from the simplest and most entertaining to the most com-
plex, this way the student's progress is centered on the difficulty
of the tasks and in their motivating characteristic.

However, this approach has epistemological antecedents in
Papert (1980) works with Logo programming language, which pro-
motes a constructionism rooted in Piaget (1954) constructivism
that conveys the idea that the child actively builds knowledge
through experience and the related “learn-by-doing” approach to
education.

Consequently, at the same time that children learn human lan-
guages, both for speaking and writing, natural languages, encom-
passing all matters related with the experimental sciences
(physics, chemistry, biology, etc.), and humanity languages,
involving social sciences and humanities, it is also necessary they
learn digital languages, inwhich ones of the competences to be suc-
cess in the digital world are included, using coding as the way to
solve problems and computational thinking as working paradigm
(Llorens-Largo, 2015).

With the awareness of the importance of digital skills and
related information technology (eSkills), there are several pro-
posals worldwide about the need to include coding from the curric-
ulum of non-university levels, starting since primary education (or
sooner) (Balanskat & Engelhardt, 2015; Brown et al., 2013; García-
Pe~nalvo, Llorens Largo, Molero Prieto, & Vendrell Vidal, 2017;
Llorens Largo, García-Pe~nalvo, Molero Prieto, & Vendrell Vidal,
2017), because of the code-literacy skills are becoming understood
as a core element for STEM (Science, Technology, Engineering, &
Mathematics) subjects (Gelman & Brenneman, 2004; Weintrop
et al., 2016), computational thinking may play an important role
in K-12 STEM education because computational modelling is an
effective approach for learning challenging science and math con-
cepts (Hambrusch, Hoffmann, Korb, Haugan, & Hosking, 2009)
and imaginative programming is the most crucial element of
computing because it closely aligns mathematics with computing
and, in this way, brings mathematics to life (Felleisen &

Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier .com/locate/comphumbeh

Computers in Human Behavior xxx (2017) 1e5

https://doi.org/10.1016/j.chb.2017.12.005
0747-5632/© 2017 Published by Elsevier Ltd.

Please cite this article in press as: García-Pe~nalvo, F. J.,&Mendes, A. J., Exploring the computational thinking effects in pre-university education,
Computers in Human Behavior (2017), https://doi.org/10.1016/j.chb.2017.12.005

www.sciencedirect.com/science/journal/07475632
www.elsevier.com/locate/comphumbeh
https://doi.org/10.1016/j.chb.2017.12.005
https://doi.org/10.1016/j.chb.2017.12.005
https://doi.org/10.1016/j.chb.2017.12.005


Krishnamurthi, 2009).
A code-literate person means that can read and write in pro-

gramming languages (M. Rom�an-Gonz�alez, 2014), computational
thinking is referred to the underlying problem-solving cognitive
process that allows it. Thus, coding is a key way to enable compu-
tational thinking (Lye & Koh, 2014) and computational thinking
may be applied to various kinds of problems that do not directly
involve coding tasks (Wing, 2008).

2. What computational thinking is

Computational thinking has an increasing presence in the dis-
cussions about how to teach technology to pre-university students.
However, there is not a consensus about what computational
thinking is among computer scientists' community.

Jeannette M. Wing (2006) defined computational thinking as:
“involves solving problems, designing systems, and understanding
human behavior, by drawing on the concepts fundamental to com-
puter science”, with a very important message about this “compu-
tational thinking is a fundamental skill for everyone, not just for
computer scientists”. She revisited the topic and provided a new
definition “Computational thinking is the thought processes
involved in formulating problems and their solutions so that the so-
lutions are represented in a form that can be effectively carried out
by an information-processing agent” (Wing, 2011).

Isbell et al. (2009) proposed a focus on providing services, inter-
faces, and behaviors that involve a more central role for modelling
as a means of formulating relationships and identifying relevant
agencies that are sources of change.

Moreover, Riley and Hunt (2014) asserted that the best way to
characterize computational thinking is as the way that computer
scientists think, the manner in which they reason.

Aho (2012) simplified this concept defining it as the thought
processes involved in formulating problems so “their solutions
can be represented as computational steps and algorithms”.

García-Pe~nalvo (2016b) defined computational thinking as the
application of high level of abstraction and an algorithmic approach
to solve any kind of problems.

Barr and Stephenson (2011) provided an operational definition
of computational thinking as a “problem-solving process that in-
cludes (but is not limited to) the following characteristics: formu-
lating problems in a way that enables us to use a computer and
other tools to help solve them; logically organizing and analyzing
data; representing data through abstractions such as models and
simulations; automating solutions through algorithmic thinking
(a series of ordered steps); identifying, analyzing, and implement-
ing possible solutions with the goal of achieving the most efficient
and effective combination of steps and resources; generalizing and
transferring this problem solving process to a wide variety of
problems”.

Hemmendinger (2010) stated, the ultimate computational
thinking should not be to teach everyone to think like a computer
scientific nor to convert every child in a software engineer, but
rather to teach them to apply these common elements to solve
problems and discover new questions to explore within and across
all disciplines. Close to this approach Sysło and Kwiatkowska (2013)
also underlined that computational thinking is a set of thinking
skills that may not result in computer programming, it should focus
on the principles of computing rather than on computer program-
ming skills.

And many more definitions and approaches to Computational
Thinking (see more in (García-Pe~nalvo, Reimann, Tuul, Rees, and
Jormanainen, 2016b)).

3. The core elements of computational thinking

Computational thinking really means an attempt to capture
computing disciplinary ways of thinking and practicing. Thus, it is
an active problem solving methodology where the students should
use a set of concepts, such as abstraction, patterns matching, etc., to
process and analyze data, and to create real or virtual artefacts.
Computational thinking does not imply to use technology in a
mandatory way to solve the problems, but it is oriented to student
will be able to solve problems throughout the technology. For this
reason, the goal of introducing ICT in pre-university curriculum is
not the students become merely tool user but tool builders.

Different core computational thinking set of components are
proposed to define specific computational thinking frameworks.

Barr and Stephenson (2011) present a structured model that
emerged focused on identifying core computational thinking con-
cepts and capabilities. The core concepts are data collection, data
analysis, data representation, problem decomposition, abstraction,
algorithms and procedures, automation, parallelization and simula-
tion. The capabilities are computer science, math, science, social
studies and language arts.

Brennan and Resnick (2012) propose a computational thinking
where the components are classified into three dimensions:

1. Computational concepts, which are the concepts that students
employ when they code: sequences, loops, events, parallelism,
conditionals, operators, and data.

2. Computational practices, which are problem solving practices
that occur in the process of coding: experimenting and iterating,
testing and debugging, reusing and mixing, and abstracting and
modularization.

3. Computational perspectives, which are the students' un-
derstandings of themselves, their relationships with others, and
the digital world around them: expressing, connecting and
questioning.

Gouws, Bradshaw, and Wentworth (2013) design a computa-
tional thinking framework to serve as foundation for creating
computational thinking resources. This framework is a two-
dimensional grid. One dimension gathers the skill sets that make
up computational thinking: processes and transformations, models
and transformation, patterns and algorithms, inference and logic,
and evaluations and improvements. The other dimension means
the different levels at which these skills may be practiced: recog-
nize, understand, apply, and assimilate.

Zapata-Ros (2015) tries to connect computational thinking with
the learning theories conceptualizations and thinking models, pro-
posing the following computational thinking components: bottom-
up analysis, top-down analysis, heuristics, divergent thinking, crea-
tivity, problem solving, abstract thinking, recursion, iteration, Suc-
cessive approximation methods (trial and error), collaborative
methods, patterns, synectics and metacognition.

TACCLE 3 Coding European project (García-Pe~nalvo, 2016a;
García-Pe~nalvo, Rees, Hughes, Jormanainen, Toivonen, and
Vermeersch, 2016a; TACCLE 3 Consortium, 2017) organizes its
guidelines and resources over three main dimensions: the ability
to interpret phenomena as computations (coding/programming),
the ability to harness computations for solving problems (logical
thinking), and the ability to design and control automation tasks
(control technology).

4. Computational thinking practices

Due to computational thinking has different interpretations,

F.J. García-Pe~nalvo, A.J. Mendes / Computers in Human Behavior xxx (2017) 1e52

Please cite this article in press as: García-Pe~nalvo, F. J.,&Mendes, A. J., Exploring the computational thinking effects in pre-university education,
Computers in Human Behavior (2017), https://doi.org/10.1016/j.chb.2017.12.005



Download English Version:

https://daneshyari.com/en/article/6836294

Download Persian Version:

https://daneshyari.com/article/6836294

Daneshyari.com

https://daneshyari.com/en/article/6836294
https://daneshyari.com/article/6836294
https://daneshyari.com

