
Putting engineering into software engineering: Upholding software
engineering principles in the classroom

Fairouz Tchier a, Latifa Ben Arfa Rabai b,⇑, Ali Mili c

a King Saud University, Riyadh, Saudi Arabia
b ISG, Bardo 2000, Tunisia
c NJIT, University Heights, Newark, NJ 07102-1982, United States

a r t i c l e i n f o

Article history:

Keywords:
Software engineering
Software engineering education
Software engineering principles
Classroom
Teaching practice

a b s t r a c t

Ever since it emerged in the late (nineteen) sixties, the discipline of software engineering has set itself
apart from other engineering disciplines in a number of ways, including: the pervasiveness of its prod-
ucts; the complexity of its products and processes; the criticality of its applications; the difficulty of man-
aging its processes and estimating its costs; the volatility of its workforce; the intractability of its process
lifecycles; etc. A number of principles have emerged from recent software engineering research, that have
the potential to bring a measure of control to the practice of this discipline; but they have not made it into
routine practice in industry. We argue that the classroom is a good place to start acquainting students
with these principles, and to start getting them into the habit of adhering to them as a matter of routine
practice.

� 2015 Elsevier Ltd. All rights reserved.

1. Software engineering education

1.1. A profession in high demand

In its 2012 survey of best jobs in America, the Wall Street Jour-
nal (http://www.wsj.com/) lists software engineers at number 1,
using data from the (US) Bureau of Labor Statistics compiled by
the job search site CareerCast (http://www.careercast.com/). This
assessment is echoed by CNN Money, which lists Software Archi-
tects and software developers among the top ten jobs in America,
citing their growth opportunities and outstanding prospects. Many
of the criteria used in this classification have global significance, i.e.
are not specific to the United States; hence their conclusions apply
equally well on a global scale. Software engineering jobs are not
only attractive, they are also in abundant supply: The TechServeAl-
liance (http://www.techservealliance.org/), a collaboration of
Information Technologies (IT) services firms, clients, consultants
and suppliers, finds, on the basis of statistics published by the
(US) Bureau of Labor Statistics, that in November 2012 the IT sector
provided 4,185,800 jobs, which represents a 2.66% increase over a
year earlier (November 2011), and a 24.24% increase over a decade
earlier (November 2002). Also, the job search site Indeed (http://

www.indeed.com/) collects statistics on the number of job
openings by sector, and finds that in October 2012, the IT sector
has 284 397 job openings, which ranks it as 3rd out of 13 sectors,
after healthcare and retail. The combination of a plentiful job
market and attractive working conditions for software engineers
creates a demand for academic degrees in the field: In its May
2012 online edition, the Wall Street Journal discusses the shortage
of IT engineers, and the efforts made by companies to find qualified
talent. Echoing this finding, the July 2012 online edition of US
News and World Report (which is responsible for the yearly rank-
ing of academic institutions in the US) writes about the explosive
growth of computer science majors on US campuses, and the strain
this places on CS departments struggling to meet the demand; in
particular, this articles cites a 25% increase of enrolment in CS at
Stanford with respect to the 2000–2001 enrolment figure, at the
height of the dot-com boom.

With increased demand for computer science and software
engineering professionals in the job market, and increased popu-
larity of computer science and software engineering majors on
campus, comes increased responsibility for computer science and
software engineering educators to review/reassess their options
and to refine their decisions. As educators, we are under conflicting
pressures to fulfil two criteria that may appear to be irreconcilable:
the short term goal of making students operational on their first
day on the job; and the long term goal of enabling them to adapt
to future technological evolution.

http://dx.doi.org/10.1016/j.chb.2015.01.054
0747-5632/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ftchier@ksu.edu.sa (F. Tchier), Latifa.rabai@isg.rnu.tn (L.B.A.

Rabai), mili@oak.njit.edu (A. Mili).

Computers in Human Behavior 48 (2015) 245–254

Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier .com/locate /comphumbeh

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chb.2015.01.054&domain=pdf
http://www.wsj.com/
http://www.careercast.com/
http://www.techservealliance.org/
http://www.indeed.com/
http://www.indeed.com/
http://dx.doi.org/10.1016/j.chb.2015.01.054
mailto:ftchier@ksu.edu.sa
mailto:Latifa.rabai@isg.rnu.tn
mailto:mili@oak.njit.edu
http://dx.doi.org/10.1016/j.chb.2015.01.054
http://www.sciencedirect.com/science/journal/07475632
http://www.elsevier.com/locate/comphumbeh


1.2. A unique engineering discipline

In addition to being the youngest field of engineering, software
engineering differs from other engineering disciplines in many
ways, which we briefly discuss below:

� The pervasiveness of its products: Software pervades all sectors of
modern economies, and all aspects of modern lifestyles. With
the emergence of social media, computers now pervade the
most personal aspects of people’s lives, especially for millenni-
als; this trend is expected to accelerate, with the advent of
wearable computing.
� The complexity of its products and processes: A recent study by

the Software Engineering Institute (Northrop et al., 2006) pre-
dicts that future software systems will have a size in excess of
a billion lines of code, and will be characterized by massive het-
erogeneity along several dimensions.
� The criticality of its applications: Software is used in many

safety–critical and mission-critical applications, making it
imperative that we control its quality attributes; because the
software development process is very labor-intensive and
involves extensive human intervention, it is very difficult to
ensure its quality through process controls, hence most quality
assurance must depend on product controls instead.
� The difficulty of managing its processes and estimating its costs:

While the bulk of the cost of an engineering product is typically
due to manufacturing (rather than design) costs, the cost of a
software product is almost totally accounted for by design
rather than manufacturing. Also, whereas testing is a minor life-
cycle cost in all engineering disciplines, it is a major cost com-
ponent in large and complex software projects, often reaching
or exceeding 50% of lifecycle costs. Also, whereas the cost of
an engineering project can typically be estimated on the basis
of project parameters, the cost of a software engineering project
is often dependent on estimates of projected line of code count,
projected function points, or projected object points, all of
which can only be obtained through expert opinion, reasoning
by analogy, and other informal analysis (Boehm et al., 1995).
� The volatility of its workforce: Empirical studies show consis-

tently that programmers distinguish themselves from other
workers by specific motivation patterns, distinct goal struc-
tures, and distinct productivity metrics.
� The intractability of its process lifecycles: Unlike the project lifecy-

cles of other engineering disciplines, software process lifecycles
do not lend themselves to simple modeling, are highly iterative
(prone to backtrack), and suffer from poor visibility (in the
sense that it is hard to tell, at any point during the project, what
portion of a project has been completed and what portion
remains).

Software engineering research of the last decades has enabled
us to gain some insights into the nature of this engineering disci-
pline, and to derive sound principles of how to manage software
projects. In this paper, we discuss how we propose to integrate
some of these principles into the computer science/software engi-
neering curriculum, at the undergraduate and graduate levels; also,
we discuss why we feel that the classroom is an adequate environ-
ment for integrating these principles into the routine practices of
software engineering students.

1.3. Principled software engineering education

Traditional engineering disciplines (chemical engineering, civil
engineering, electrical engineering, mechanical engineering,
nuclear engineering, etc.) are based on theoretical laws that have
matured through decades, sometimes centuries, of research, and

have made their way into routine practice and into routine educa-
tional materials. The youth of the software engineering discipline,
the complexity of software processes and artefacts, and the mas-
sive market pressures placed on the software industry have under-
mined this natural flow, and have caused the proliferation of
improvised ad-hoc solutions whose foundations are not carefully
analyzed and understood.

We argue that a long term solution to this situation involves the
integration of software engineering principles into the educational
curriculum. Whereas software engineering is usually divided into
three broad areas, dealing with technical aspects, economic
aspects, and organizational aspects, we focus in this paper on tech-
nical aspects, and we select four principles therein. These princi-
ples deal with the four main phases of the software lifecycle,
namely: requirements specification, software design, program-
ming, and testing. We present them below:

� Formal Specifications: We argue that formal specifications are an
indispensable basis for any sound analysis of the functional
properties of software artefacts. The art of identifying relevant
stakeholders, eliciting relevant requirements, representing
these requirements and combining them into a comprehensive
specification are an integral part of a software engineering
discipline.
� Modular Design: Modular programming (Parnas, 1972) is a dis-

cipline of bottom-up program design that is based on the prin-
ciple of information hiding, whereby each component/module
in a software product exports its specification but hides its
design and implementation. This approach offers significant
advantages to software developers, in terms of enhanced pro-
grammer productivity, and enhanced program maintainability,
testability, reliability, and reusability. We argue that it is an
integral part of a software engineering discipline.
� Verification-based Programming: Computers are precise

machines that hold us rigorously to every word/every symbol
we write in a program; we cannot work with such machines
unless we can match their precision and rigor with equally pre-
cise methods of program construction. In the same way that a
civil engineer designs a bridge by solving equations pertaining
to load requirements and terrain characteristics, and in the
same way that a mechanical engineer designs an engine by
solving equations pertaining to power requirements and vehicle
characteristics, so a software engineer ought to design pro-
grams by calculation from software requirements and machine
characteristics, rather than by obscure trial and error
approaches.
� Goal Oriented Testing: We argue that software testing should be

conducted in a systematic manner, by following a rigorous pro-
cess that includes the following steps (Mili & Tchier, 2015):
defining a precise goal for the test (unit testing, integration test-
ing, acceptance testing, certification testing, reliability testing,
regression testing, etc.); defining precise hypotheses under
which the test is conducted (what are we assuming to be cor-
rect, what are we checking); defining an oracle that determines
whether any given test was successful; defining a criterion for
test data selection; defining a criterion for when we can con-
sider that the goal of the testing activity has been achieved;
defining how the test results are to be analyzed; defining the
claim that we can make about the software artefact once the
test has completed and its results have been analyzed.

These four principles are not routine in current industrial prac-
tice, as confirmed repeatedly by our students, many of whom hold
positions in industry. In this paper, we discuss the design and
delivery of two courses where we make a special effort to adhere
to these principles, and report on our experience. We feel that

246 F. Tchier et al. / Computers in Human Behavior 48 (2015) 245–254



Download English Version:

https://daneshyari.com/en/article/6838343

Download Persian Version:

https://daneshyari.com/article/6838343

Daneshyari.com

https://daneshyari.com/en/article/6838343
https://daneshyari.com/article/6838343
https://daneshyari.com

