
Student perception and usage of an automated programming
assessment tool

Manuel Rubio-Sánchez a,⇑, Päivi Kinnunen b, Cristóbal Pareja-Flores c, Ángel Velázquez-Iturbide a

a Departamento de Lenguajes y Sistemas Informáticos I, Universidad Rey Juan Carlos, c/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
b Department of Computer Science and Engineering, Aalto University, PO Box 15400, FI-00076 Aalto, Finland
c Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain

a r t i c l e i n f o

Article history:
Available online 30 April 2013

MSC:
97C40
97C80
97U70

Keywords:
Computer science education
Automated assessment system
Mooshak
Online judge

a b s t r a c t

Automated assessment systems are gaining popularity within computer programming courses. In this
paper we perform an empirical evaluation of Mooshak, an online judge that verifies program correctness,
in order to determine its usefulness in classroom settings. In particular, we provide a detailed study on
how students use the tool, analyze their opinions and critiques about it, and measure other features like
its capability to reduce dropout rates. The experience was carried out within a course on algorithm design
and analysis where we collected information through several questionnaires and data generated by the
tool during the course. Among the main findings we highlight: (1) the usage of the tool was adequate in
relation to students’ own testing; (2) its feedback needs to be richer in order to improve its acceptance
among students; and (3) there was no statistical evidence to claim Mooshak reduced the dropout rate.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Grading computer programs is a complex task. It is time-con-
suming, tiresome, and prone to inconsistencies and inaccuracies,
especially in large classes due to the diversity of the solutions.
While certain programming skills require manual evaluations,
grading can be enhanced and simplified with the use of automated
assessment systems (Douce, Livingstone, & Orwell, 2005; Ala-Mut-
ka, 2005; Joy, Griffiths, & Boyatt, 2005; Brusilovsky & Higgins,
2005; Ihantola, Ahoniemi, Karavirta, & Seppälä, 2010; Queirós &
Leal, 2012), which are capable of measuring several software fea-
tures automatically such as functionality, efficiency, compilation
or runtime errors. Benefits of most of these tools include evalua-
tion objectivity and consistency, immediate feedback, 24-h avail-
ability, or increased clarity of student code. However, they also
present drawbacks related to plagiarism (Sheard, Dick, Markham,
Macdonald, & Walsh, 2002; Chen, 2004), or poor usage, where stu-
dents do not test their programs properly before submitting them
(Edwards, 2003; Chen, 2004).

This paper describes an empirical evaluation of the automated
assessment system Mooshak (Leal et al., 2003), which has been

used in programming contests and academia. While other studies
have applied Mooshak successfully in classroom settings (Leal &
Silva, 2010), the literature lacks detailed analyses about the usage
of the tool, and how students perceive its helpfulness in learning.
Additionally, in Gárcia-Mateos and Fernández-Alemán (2009) and
Montoya-Dato, Fernández-Alemán, and Garcı́a-Mateos (2009) the
dropout rate in a first year programming course decreased consid-
erably after using Mooshak. However, it is not clear whether this
reduction was due to the assessment system, or to a different
teaching methodology that was introduced simultaneously.

In this paper our major goal is to understand the possibilities
and drawbacks of using Mooshak in a classroom setting, and to
provide ideas for improvement. Therefore, our research questions
are: (1) to what extent do students use Mooshak as a substitute
for their own testing and debugging; (2) how do students experi-
ence the usage of Mooshak and how would they improve the tool;
and (3) whether the usage of Mooshak influences the dropout rate.

The contribution of this paper is a detailed analysis of how stu-
dents perceive Mooshak and how they use it. In particular, we
found that most students used the tool appropriately regarding
their own testing and debugging. However, despite acknowledging
that using Mooshak was a good idea, students did not appreciate
the experience as a whole, where the main reported drawback
was related to its feedback. Finally, we did not find enough statis-
tical evidence to claim that Mooshak reduced the dropout rate.

0747-5632/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.chb.2013.04.001

⇑ Corresponding author. Tel.: +34 914888286.
E-mail addresses: manuel.rubio@urjc.es (M. Rubio-Sánchez), paivi.kinnune-

n@aalto.fi (P. Kinnunen), cpareja@sip.ucm.es (C. Pareja-Flores), angel.velazque-
z@urjc.es (Á. Velázquez-Iturbide).

Computers in Human Behavior 31 (2014) 453–460

Contents lists available at SciVerse ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier .com/locate /comphumbeh

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chb.2013.04.001&domain=pdf
http://dx.doi.org/10.1016/j.chb.2013.04.001
mailto:manuel.rubio@urjc.es
mailto:paivi.kinnunen@aalto.fi
mailto:paivi.kinnunen@aalto.fi
mailto:cpareja@sip.ucm.es
mailto:angel.velazquez@urjc.es
mailto:angel.velazquez@urjc.es
http://dx.doi.org/10.1016/j.chb.2013.04.001
http://www.sciencedirect.com/science/journal/07475632
http://www.elsevier.com/locate/comphumbeh


2. The automated assessment system Mooshak

Mooshak is an online judge that checks whether computer pro-
grams have been implemented properly and work correctly. Given
a set of predefined instances of some computational problem con-
sisting of input–output pairs, it compiles and runs source code in
order to verify whether the program generates the desired outputs
given the initial inputs. After testing a submitted program, Moo-
shak returns a brief feedback message indicating if it has produced
correct outputs for all of the instances (A: accepted), or whether it
causes some error (PE: presentation error; WA: wrong answer; RE:
runtime error; CTE: compile time error; IF: invalid function; TLE:
time limit exceeded).1

Despite being initially designed for use in programming con-
tests,2 Mooshak has been successfully applied in computer program-
ming courses. It supports a variety of programming languages such
as C/C++, Java, or Pascal, which is appropriate when students have
different programming experience. However, allowing several lan-
guages can limit the use of anti-plagiarism software (since these
tools generally do not compare codes written in different languages).
In Mooshak the inputs and outputs that define the test sets are spec-
ified through text files. The judge compares each character of the de-
sired outputs with those obtained by students’ programs on
particular inputs, see also (Reek, 1989). Other systems like Course-
Marker (Higgins, Hegazy, Symeonidis, & Tsintsifas, 2003) or HoGG
use more sophisticated strategies like pattern matching or regular
expressions to allow a greater flexibility for the outputs. Students
submit only one file to the server per exercise. Thus, if an assignment
needs to use several files these can be compressed into a single one,
which can later be processed by some script (Montoya-Dato et al.,
2009). Finally, after each submission the feedback message (which
is often instantaneous) together with the identity of the correspond-
ing student is publicly shown on a list.

3. Methods

In order to answer our research questions, we carried out an
exploratory analysis related to data collected from questionnaires
and information provided by Mooshak, within an algorithm design
and analysis course.

3.1. Algorithm design and analysis course

We used Mooshak in a 13-week course on algorithm design and
analysis, for 55 (6 female and 49 male) second year students
(where the median age3 was 19.5, with mode 19, and standard devi-
ation 1.47) of a computer science degree at Universidad Rey Juan
Carlos (Madrid, Spain) in 2010. About one third of the course was
dedicated to computational complexity, while the rest covered de-
sign paradigms such as divide and conquer, greedy algorithms, dy-
namic programming, and backtracking. It comprised seven
programming exercises arranged in three assignments related each
paradigm except the greedy approach. Students used recursive or di-
vide and conquer strategies to solve the first four exercises: power in
logarithmic time, root finding, matrix block multiplication, and a
variant of merge-sort. The fifth and sixth exercises consisted in
implementing the pseudocode described in Cormen, Stein, Rivest,
and Leiserson (2003) for the top-down and bottom-up approaches
for the ‘‘Assembly-line scheduling’’ problem related to dynamic

programming. Finally, the seventh exercise involved creating a Sud-
oku solver by using backtracking.

We introduced Mooshak in a 1 h lecture since students did not
have any previous experience with it (or any other automated
assessment system). We also dedicated a 2 h lab class to Mooshak
where students implemented and submitted very basic programs,
but with which they could observe the various types of error mes-
sages the judge returns.

3.2. Research design

We collected data associated with the questionnaires described
in Rubio-Sánchez, Kinnunen, Pareja-Flores, and Ángel Velázquez-
Iturbide (2012) and Supplemental material, which were filled in
during the course and would grant students an extra 5% on their
final grade. A first 14-item questionnaire was aimed at acquiring
background information regarding their previous grades and pro-
gramming skills. A second larger 64-item (pre-test) questionnaire
was developed to measure variables related to background knowl-
edge, self-efficacy, goal orientation and motivation, study habits,
and feedback. Both questionnaires were filled in at the beginning
of the course by 52 students, prior to any exposure to Mooshak.
Three of the items were boolean (q1, q2, and q51), while the
remaining 61 were measured on a 5-point Likert scale (1: strongly
disagree, 5: strongly agree). At the end of the course the 64-item
(post-test) questionnaire was filled in again by 34 students (who
had all filled in the initial questionnaires, see Section 4.1 regarding
dropout rates), together with another 25-item questionnaire that
we elaborated in order to measure students’ opinion and accep-
tance of Mooshak4. This last questionnaire was entirely based on
the same 5-point Likert scale, except for an extra open question that
asked students how the tool could be enhanced.

3.3. Grades and submission information from Mooshak

From a research point of view, a distinguishing feature of Moo-
shak is the possibility to export data related to its usage (in XML or
tab-separated text files) that contain a wide array of information
regarding submissions. Thus, we were able to automatically gather
data associated with submission dates or the type of feedback mes-
sages, and compute related variables such as average rankings on
exercises (according to the date of the first accepted submission),
the number of submissions until a first acceptance is obtained, or
the average number of errors. In particular, this data was collected
for 51 students that used the judge at some point during the
course.

Finally, we have also included in our analyses the grade on
homeworks and on the algorithm design exercises of the final
exam.

4. Results

4.1. Dropout rates

In the Spanish public academic system students have two
opportunities to pass a course. If they do not pass at the end of a
semester they are allowed to take new exams and hand in late or
failed assignments at the end of a regular school year. In this sce-
nario, students rarely drop out of courses officially. Therefore, we
consider both students that do not hand in any assignments for
credit nor take exams (early dropouts), and the ones that having
submitted at least one homework during the semester do not take
the final exam (late dropouts). Table 1 shows the percentages and

1 There are other possible feedback messages, but these are the only ones we have
observed in our data.

2 Mooshak has been used in ACM-ICP regional contests (SWERC), IOI, or
IEEEXtreme.

3 Computed for 52 students that filled in a background information questionnaire
(see Section 3.2). 4 We did not find validated scales in the literature for our needs.

454 M. Rubio-Sánchez et al. / Computers in Human Behavior 31 (2014) 453–460



Download English Version:

https://daneshyari.com/en/article/6839541

Download Persian Version:

https://daneshyari.com/article/6839541

Daneshyari.com

https://daneshyari.com/en/article/6839541
https://daneshyari.com/article/6839541
https://daneshyari.com

