
Serious games in tertiary education: A case study concerning the
comprehension of basic concepts in computer language implementation
courses

Daniel Rodríguez-Cerezo, Antonio Sarasa-Cabezuelo, Mercedes Gómez-Albarrán, José-Luis Sierra ⇑
Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad de Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain

a r t i c l e i n f o

Article history:
Available online 11 July 2013

Keywords:
Serious game
Computer Science education
Authoring tool
Learning analytics
Attribute grammar

a b s t r a c t

This paper describes Evaluators, a system for the development of educational serious games oriented to
introductory computer language implementation courses similar to those included in Computer Science
tertiary curricula. Evaluators lets instructors generate games from collections of exercises addressing
basic concepts about the design and implementation of computer languages (in particular, the processing
of artificial languages according to the model of attribute grammars). By playing the generated games,
students interactively learn the fundamentals of the semantic evaluation process behind attribute gram-
mars. Indeed, they implicitly find solutions to the exercises presented, and they receive immediate feed-
back about successful and incorrect actions. In addition, the games log students’ actions, which can
subsequently be analyzed by the instructors using a specialized analytic tool that is included in Evalua-
tors. Assessment of the system, which was performed according to three different dimensions (the
instructors’ perspective, the students’ perspective and educational effectiveness perspective), (a) indi-
cates that the exercise-driven approach of Evaluators is a cost-effective approach amenable to extrapola-
tion to other areas of Computer Science tertiary education, (b) shows a positive attitude of students
toward the serious games built with Evaluators, and (c) evidences a positive effect of the system and
its pedagogical strategy on long-term student performance.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Computer language implementation is a subject included in
mainstream Computer Science curricular recommendations as a
key aspect of a computer scientist’s basic education (ACM/IEEE,
2008). Students usually consider it a difficult subject due to its
intrinsically abstract nature, which in turn results in a lack of moti-
vation in students compared to more practical topics in the curric-
ula, such as programming technologies (Waite, Jarrahian, Jackson,
& Diwan, 2006).

To facilitate the learning process of the students enrolled in a
Compiler Construction course at the Complutense University of
Madrid (Spain), we decided to use syntax-directed translation
(Aho, Lam, Sethi, & Ullman, 2007) as a main paradigm for architect-
ing language processors and attribute grammars (Paakki, 1995) as a
basic formalism for the specification tasks. Our aim was to make
students aware of the importance of clearly separating the specifi-
cation of the different aspects of a language processor from its

subsequent implementation. Based on our experience, the success
of this teaching strategy depends heavily on the success that we
have in teaching the basic concepts of the formalisms of attribute
grammars and their underlying computational model during the
early stages of the course. To help our students assimilate the
attribute grammar essentials, in the 2009–2010 edition of the
course, we created and provided students with batteries of exer-
cises related to the comprehension level of Bloom’s taxonomy
(Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956). Students com-
pleted exercises, each consisting of the following components:

� An informal description of a language processing task. This is a
free-text description of the language processing problem to be
addressed using attribute grammars.
� A formalization of the task by means of an attribute grammar.

This is a formal specification using the attribute grammars’ for-
malisms of the processing problem stated in the informal
description.
� A sentence in the processed language (e.g., a program or a pro-

gram fragment if the processed language is a programming lan-
guage, which is the type of language commonly used in
introductory Compiler Construction courses).

0747-5632/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.chb.2013.06.009

⇑ Corresponding author. Tel.: +34 913947548; fax: +34 913947547.
E-mail address: jlsierra@fdi.ucm.es (J.-L. Sierra).

Computers in Human Behavior 31 (2014) 558–570

Contents lists available at SciVerse ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier .com/locate /comphumbeh

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chb.2013.06.009&domain=pdf
http://dx.doi.org/10.1016/j.chb.2013.06.009
mailto:jlsierra@fdi.ucm.es
http://dx.doi.org/10.1016/j.chb.2013.06.009
http://www.sciencedirect.com/science/journal/07475632
http://www.elsevier.com/locate/comphumbeh


� The parse tree of this sentence, along with the semantic attri-
bute instances whose values should be determined as a result
of processing the sentence (e.g., the type of expression or the
code generated for this expression if a programming language
is considered).

To complete the exercises, students must enumerate an evalu-
ation order for every semantic attribute to explain how the values
of these attributes could be calculated in the attributed parse tree
provided.

The learning reinforcement provided by solving the exercises
proved satisfactory for helping students assimilate fundamental
concepts of attribute grammars. For instance, the exercises helped
them understand the dependency-driven computation strategy,
according to which the evaluation order does not matter as long
as the dependencies among attributes are preserved, similarly,
for instance, to what happens in a spreadsheet. Unfortunately,
however, we also observed that the lack of motivation remained.
Indeed, many students found it boring to solve these exercises
using pencil and paper. As a consequence, many of them provided
incorrect or unfinished solutions, as the students’ general tendency
was to extrapolate the instructors’ solution templates to the new
exercises; the predominance of rote learning was alarming. There-
fore, we considered creating more effective methods for overcom-
ing the deficiencies detected.

Taking into account that serious games are a growing trend in
the field of e-learning, as well as the significant success of this type
of environment in recent years (Amory et al.,1999; de Freitas &
Liarokapis, 2011; Gee, 2003; Jiménez-Díaz, Gómez-Albarrán, &
González-Calero, 2007; Minua, Andreas, & Lakhmi, 2011), we
decided to develop Evaluators, an educational system that lets
instructors easily generate serious games following an exercise-
driven approach. The serious games in Evaluators are generated
from batteries of exercises concerning basic concepts of attribute
grammars of the type described above. These exercises are devel-
oped using the authoring tool provided in Evaluators. The games
generated involve students in interactive simulations of the
semantic evaluation processes behind attribute grammars. Stu-
dents determine the correct evaluation order for semantic attri-
butes, and they receive immediate feedback on both successful
and incorrect actions. Student actions are logged and can later be
analyzed by the instructors using a specialized analytic tool in-
cluded in Evaluators. Evaluators benefits from our experience in
the development of educational simulations and games (Jiménez-
Díaz, González-Calero, & Gómez-Albarrán, 2012; Jiménez-Díaz
et al., 2007) and is an evolution of our previous work in the devel-
opment of specialized tools related to the learning of language pro-
cessing (Sierra, Fernández-Pampillón, & Fernández-Valmayor,
2008), in which students had to provide solutions to processing
problems that were similar to the ones used in Evaluators but fo-
cused on writing specifications instead of comprehending them.

The structure of the rest of the paper is as follows: Section 2
presents several works that are related to this project; Section 3
provides an in-depth description of Evaluators; Section 4 reports
some results of our assessment of the system; and Section 5 pre-
sents the conclusions and future work.

2. Related work

In this section, we summarize some works related to ours: ped-
agogical approaches followed in Compiler Construction courses
(Section 2.1), visualization and simulation tools used in Computer
Science education (Section 2.2), educational tools for enhancing
the teaching and learning of concepts related to Compiler Con-
struction (Section 2.3), and game-based teaching and learning of
Computer Science topics (Section 2.4).

2.1. Teaching of Compiler Construction courses

There are different strategies for facilitating the assimilation of
concepts in Compiler Construction courses. These strategies can be
roughly grouped in the following categories:

� Implementation of a processor for a small programming language.
This is the approach that is most widely used by instructors. In
this approach, instructors describe a small programming lan-
guage with a couple of basic data types, basic operations for
these data types, control structures (such as loops and condi-
tionals) and an abstraction mechanism. The students have to
implement a compiler for the programming language. There
are different prototypical languages used for this strategy, such
as COOL (Aiken, 1996), MINIML (Baldwin, 2003) and CHIRP (Xu
& Fred, 2006). Other less conventional proposals also exist, such
as those in which students use languages for graph representa-
tion (Werner, 2003), simple figure drawing (Ruckert, 2007) or
robot action programming (Xu & Fred, 2006). The main advan-
tage of these languages is the motivational component that they
possess.
� Small language processing projects. This strategy aims to solve

two major problems based on the implementation of a whole
language processor: the tangible possibility that students get
stuck in the first phases of development and cannot accomplish
the project on time and the need for mastering concepts for
developing the language processor that are not taught until
later in the course. For this purpose, using small projects focuses
students on the concepts covered in class. Thus, as the course
progresses, students are able to immediately apply the concepts
studied in class. The works by Ledgard (1971) and Shapiro and
Mickunas (1976) provide an in-depth discussion of this
strategy.
� Analysis and debugging of processors for real programming lan-

guages. The main idea behind this strategy is that the imple-
mentation of any language compiler (a small one or small
languages projects) is not sufficient to teach all the concepts
involved in the development of real programming language
processors. Thus, the work of White, Sen, and Stewart (2005)
proposes teaching language processor internals by debugging
the source code of real-world compilers. The instructors, by
using breakpoints and monitoring the values of certain vari-
ables, can focus on different aspects of the processing and drive
the sessions according to the concepts taught in the lectures.

While these methodologies are mainly focused on the imple-
mentation aspects of language processors, we have realized from
our experience in teaching this topic at the Complutense Univer-
sity of Madrid that, in addition to emphasizing implementation,
it is necessary to emphasize specification aspects, as the specifica-
tion of language processors is a critical concern throughout the
whole development process. Thus, strategies strongly geared to-
ward implementation aspects are not capable of successfully help-
ing students understand the formal specifications taught in
lectures. Our main aim with Evaluators is to palliate this inconve-
nience from the beginning, teaching the basic concepts of attribute
grammars, which is a specification formalism that fits well with
the syntax-directed translation paradigm that we encourage at
the Complutense University of Madrid.

2.2. Visualization and simulation tools for teaching Computer Science

The main objective of the serious games generated with Evalu-
ators is to assist students of Compiler Construction in their learning
by immersing them in the semantic evaluation process involved in
attribute grammars. To this end, Evaluators games are similar to

D. Rodríguez-Cerezo et al. / Computers in Human Behavior 31 (2014) 558–570 559



Download English Version:

https://daneshyari.com/en/article/6839573

Download Persian Version:

https://daneshyari.com/article/6839573

Daneshyari.com

https://daneshyari.com/en/article/6839573
https://daneshyari.com/article/6839573
https://daneshyari.com

