
Journal of Mathematical Behavior 36 (2014) 20–32

Contents lists available at ScienceDirect

The  Journal  of  Mathematical  Behavior

j ourna l h omepa ge: www.elsev ier .com/ locate / jmathb

Learning  mathematics  through  algorithmic  and  creative
reasoning

Bert  Jonssona,∗,  Mathias  Norqvistb,d,  Yvonne  Liljekviste,f, Johan  Lithnerc,d

a Department of Psychology, Umeå University, Sweden
b Department of Mathematics and Mathematical Statistics, Umeå University, Sweden
c Department of Science and Mathematics Education, Umeå University, Sweden
d Umeå Mathematics Education Research Centre, Umeå University, Sweden
e Department of Mathematics and Computer Science, Karlstad University, Sweden
f The Centre of Science, Mathematics and Engineering Education Research, Karlstad University, Sweden

a  r  t  i c  l  e  i  n  f  o

Keywords:
Mathematical reasoning
Reasoning
Cognitive proficiency
Memory retrieval

a  b  s  t  r  a  c  t

There  are extensive  concerns  pertaining  to the idea  that students  do not  develop  suffi-
cient  mathematical  competence.  This  problem  is  at least  partially  related  to the  teaching
of  procedure-based  learning.  Although  better  teaching  methods  are  proposed,  there  are
very  limited  research  insights  as  to  why  some  methods  work  better  than  others,  and  the
conditions  under  which  these  methods  are  applied.  The  present  paper  evaluates  a  model
based on  students’  own  creation  of  knowledge,  denoted  creative  mathematically  founded
reasoning  (CMR),  and  compare  this  to  a  procedure-based  model  of  teaching  that  is  similar
to what  is  commonly  found  in  schools,  denoted  algorithmic  reasoning  (AR).  In the  present
study, CMR  was  found  to outperform  AR. It was  also found  cognitive  proficiency  was  sig-
nificantly associated  to test  task  performance.  However  the analysis  also showed  that  the
effect was more  pronounced  for  the AR group.
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1. Introduction

The overarching goal in the teaching of mathematics is to help students develop mathematical competence; that is the
ability to understand, judge, do, and use mathematics across a variety of mathematical situations (Niss, 2007). Basic mathe-
matical competencies include problem-solving abilities (how to solve tasks without knowing a solution method in advance),
reasoning ability (the ability to justify choices and conclusions), and conceptual understanding (insights regarding the origin,
motivation, meaning, and use of mathematics). In an experimental design the present study primarily addresses whether
and how students can develop conceptual understanding through mathematical problem solving and mathematical reason-
ing by engaging in more creative activities than procedure-based learning using predefined algorithms (e.g., Haavold, 2011;
Lithner, 2003, 2008). In addition, the mathematical task solving and reasoning are considered in relation to individual vari-
ation in cognitive proficiency. The present study is carried out in an experimental design and in that context it is important
to point out that the proportion of studies that have been conducted pertaining to mathematics education, and that adopt
experimental designs, is rare. During 2012, only 3% of papers published in leading mathematics education journals used
experimental designs (Alcock, Gilmore, & Inglis, 2013).
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1.1. Learning in mathematics

Much time in mathematics classes is spent learning and rehearsing algorithms, which are supposed to provide students
with a quick and reliable way to cope with many of the tasks ahead (Boesen et al., 2014; Hiebert, 2003). There are, however,
doubts as to whether these algorithms actually give rise to any deeper understanding of the principles of mathematics, or
whether the extensive use of algorithms is counterproductive (Hiebert, 2003). The notion of an algorithm includes all pre-
specified procedures, that is, finite sequences of executable instructions that allow one to solve a given set of tasks (Brousseau,
1997). The importance of an algorithm is that it can be determined in advance, and the execution of an algorithm is associated
with high reliability and speed, which is the strength of using an algorithm when the purpose of a task is only to produce an
answer to a particular problem. In many cases, using an algorithm is appropriate; it saves time and prevents miscalculations.
In this way, using algorithms provides students with opportunities to solve tasks simply by reusing the procedure that a
particular algorithm stands for. However, the use of algorithmic reasoning is, in itself, not an indication of one’s conceptual
understanding of mathematics (Haavold, 2011). In addition, the reason why  an algorithm is regarded as efficient in solving a
task (but not for learning) is that it is designed to avoid meaning (Brousseau, 1997). Algorithms are often presented within a
classroom context. A typical situation arises whereby the teacher or textbook provides students with a set of mathematical
tasks and a template solution method (algorithm); this is then followed by massive repetition of the algorithm, leading to
an un-reflected use of the same algorithm (Boesen et al., 2014; Lithner, 2008). The tasks can, therefore, be solved according
to the provided template without any conceptual understanding of the actual problem. Sufficient amounts of exposure to
the algorithm may  also lead to rote learning (the process of learning something by repeating it until it becomes memorized,
rather than learning something by understanding the meaning of it; Oxford Advanced Learner’s Dictionary); this means that
the algorithm can be recalled in its original form without any conceptual understanding of it.

In the present study, we define using memorized or well-rehearsed procedures (such as algorithms) without reflecting
on their meaning as algorithmic learning. An important note is that using well-rehearsed procedures or engaging in rote
learning can be an efficient way to learn facts such as multiplication tables (Caron, 2007). In a similar way, using algorithms
can reduce the cognitive demands of complicated calculations (Haavold, 2011), and thus also the cognitive load on our
working memory (Raghubar, Barnes, & Hecht, 2010).

The components and capacity of working memory refer to the ability to process and store information simultaneously
(e.g., Baddeley, 2010). Students could, therefore, be aided by using algorithms that reduce the cognitive load, thereby freeing
resources for more advanced problem solving to occur (Merriënboer & Sweller, 2005). However, if all or most learning is
done using routine procedures, it can lead to algorithmic reasoning that is based on superficial features of the algorithm,
and not on the intrinsic properties of the tasks at hand (Hiebert, 2003; Lithner, 2003); as a result, there is a risk that
mathematical competences are not well developed. In spite of being efficient in the short term – in the sense that students
can quickly solve new practice tasks, as long as there are templates to use and memorize – there are many studies showing
that procedure based teaching models fail to enhance students’ long-term development in basic mathematical competencies
(see Hiebert, 2003 for an overview). Several other concepts are used in the literature to capture similar phenomena related
to the dichotomy between superficial versus deep/true/conceptual mathematical learning. In the seminal book “Conceptual
Knowledge and Procedural Knowledge” (Hiebert, 1986), Hiebert and Lefevre defined conceptual knowledge as a form of
knowledge that is rich in informational relationships, and linked in a network where the connections within the network
are as important as the discrete pieces of information themselves. Procedural knowledge was defined in terms of a person’s
ability to become familiar with the symbols and conventions of mathematics, while having access to the rules or procedures
required to solve mathematical problems (Hiebert & Lefevre, 1986). However, Star (2005) argued that conceptual knowledge
does not necessarily need to have a rich informational relationship. For example, a child’s conceptual knowledge can be less
sophisticated and differently connected than that of an adult, but it is still regarded as conceptual knowledge. In a study by
Rittle-Johnson and Alibali (1999) it was argued that ‘conceptual instructions’ (children were told the underlying principle
behind the problem solution) to greater extent than procedural based instructions (being taught the procedure) influence
conceptual understanding. However the results also indicated that the relationship is bidirectional, se also Rittle-Johnson,
Siegler, and Alibali (2001) and Schneider, Rittle-Johnson, and Star (2011). In the present study, no ‘conceptual instructions’
such as the underlying principles are provided. The key issue in the present study is allowing for mathematical “struggle” in
adidactical situations (no teacher support) with tasks that are designed to facilitate students’ own construction of solutions.

1.2. The importance of a productive “struggle”

In order for students to obtain desirable learning outcomes, “the students need to be engaged in activities where they
have to ‘struggle’ (in a productive sense of that word) with important mathematics” (Niss, 2007, p. 1304). At the same time, a
delicate balance must be maintained in order to prevent these struggles from becoming obstacles, rather than promoters of
learning. Hiebert and Grouws (2007) concluded in a mathematics education research review that this ‘struggle’ is necessary
in order to enhance students’ development of conceptual understanding of the principles involved in mathematics. Still, little
is known about how this idea of a ‘struggle’ translates into specific activities that are useful in the teaching of the subject,
and in what way  these activities are linked to learning outcomes (Niss, 2007). However, support for the argumentation of
learning outcomes can be found in the field of memory research, where several studies have shown that more ‘struggle’ in
terms of more effortful retrieval is effective for later performances on subsequent tasks (e.g., Pyc & Rawson, 2009); these are
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