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a b s t r a c t

Inquiry learning can be facilitated by having students investigate the domain through a computer
simulation and express their acquired understanding in a runnable computer model. This study
investigated whether heuristic worked examples can further enhance students’ inquiry behaviour, the
quality of the models they create, and their domain knowledge. High-school students were offered a
simulation of an electrical circuit and a modelling tool. Students in the experimental condition (n ¼ 46)
could consult heuristic worked examples that explained what activities were needed and how
they should be performed. Students in the control condition (n ¼ 36) did not receive this support.
Cross-condition comparisons confirmed that heuristic worked examples improved students’ inquiry
behaviour and enhanced the quality of their models. However, few students created a model that
reflected full understanding of the electrical circuit, and the expected between-group difference in
posttest scores failed to appear. Based on these findings, improvements to the design of heuristic worked
examples are proposed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recent meta-analyses have concluded that inquiry learning can
benefit students and can lead to superior student performance than
more direct forms of instruction (Alfieri, Brooks, Aldrich, &
Tenenbaum, 2011; Minner, Levy, & Century, 2010). However, these
meta-analyses also suggest that these benefits only hold when
students are supported during their inquiry activities. This support
is needed to compensate for students’ modest inquiry skills, their
prior knowledge deficits, or both. De Jong and van Joolingen’s
(1998) review revealed a broad variety of skill deficiencies in
simulation-based inquiry learning. When students learn about
phenomena through systematic experimentation with a simula-
tion, they are generally unable to infer hypotheses from data,
design conclusive experiments, engage in efficient experimentation
behaviour, and attend to incompatible data. Similar problems arise
when students engage in scientific modelling (hereafter: model-
ling) to create computer models of their understanding of scientific
phenomena. Hogan and Thomas (2001), for example, noticed that
students often fail to engage in dynamic iterations between
examining output and revising models, and Stratford, Krajcik, and
Soloway (1998) observed a lack of persistence in debugging
models to fine-tune their performance.

Mulder, Lazonder, and de Jong (2010) examined whether these
results generalize to a learning task where simulation-based in-
quiry and modelling are combined (cf. Basu, Dickes, Kinnebrew,
Sengupta, & Biswas, 2013; van Joolingen, de Jong, Lazonder,
Savelsbergh, & Manlove, 2005). This combined approach enabled
students to learn about a scientific phenomenon by experimenting
with a simulation. Once students had developed an initial under-
standing of the phenomenon, they built a runnable model to ex-
press their knowledge. This model can be thought of as a set of
hypotheses students can test by running the model and checking
its output against data from the simulation. Based on this evalu-
ation students can refine their understanding through additional
experimentation with the simulation and further revision of their
model. Mulder et al. found that domain novices are quite capable
of identifying which variables to include in their models, but have
difficulty inferring how these variables are related. Instead of
working step-by-step toward a full-fledged scientific equation to
specify a relationship, novices tried to induce and model these
equations from scratch, which proved to be ineffective given their
lack of prior domain knowledge. These findings suggest that stu-
dents could benefit from support that prevents them from
‘jumping the gun’ and that better attunes their inquiry and
modelling activities to their level of domain knowledge (cf.
Quintana et al., 2004).

This support can be offered in a non-intrusive way by organizing
the learning task according to a simple-to-complex sequence that
matches the students’ increasing levels of domain understanding.
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This type of task structuring was first introduced by White and
Frederiksen (1990), who termed it ‘model progression’. Model
progression was found to lead to higher performance success in
some studies (Alessi, 1995; Eseryel & Law, 2010; Rieber & Parmley,
1995; Swaak, van Joolingen, & de Jong, 1998), but other studies
report less favourable results (de Jong et al., 1999; Quinn & Alessi,
1994). These differential effects might be attributable to the use
of slightly different configurations of the simple-to-complex
sequencing. Some studies introduced students to all of the
learning content at once and engaged them in increasingly specific
reasoning about the task content (i.e., model order progression)
whereas students in other studies engaged in specific reasoning
from the start andwere confronted with increasingly elaborate task
content (i.e., model elaboration progression).

Mulder, Lazonder, and de Jong (2011) implemented both types
of model progression in a simulation-based inquiry and model-
ling task about the charging of a capacitor in an electrical circuit.
Both types divided the task into three successive phases, but
differed with regard to the sequencing principle that determined
how task complexity increased across these phases. Model order
progression, the predicted optimal variant, gradually increased the
specificity of the relations between variables. In Phase 1, students
had to identify all relevant variables and relations and sketch the
model outline. In Phase 2, they had to indicate a general direction
of the effect for these relations, and in Phase 3 they had to specify
these relationships quantitatively in the form of an equation.
Model elaboration progression, by contrast, gradually expanded the
number of variables in the task. Students had to investigate and
model an electrical circuit with a voltage source and one light
bulb in Phase 1. An additional light bulb was introduced in Phase
2, and a capacitor was added in Phase 3. Students who were
supported by either type of model progression outperformed
students from an unsupported control condition. A comparison
between the two model progression variants further showed that
students in the model order group outperformed those from the
model elaboration group on the construction of relations in their
models.

However, in this study even students in the best-performing
model progression group produced mediocre models. In a follow-
up study, attempts to optimize model progression also failed to
substantially improve students’ performance (Mulder, Lazonder, de
Jong, Anjewierden, & Bollen, 2012). Unfortunately, it is not
uncommon that scaffolding has little success in enhancing what
students learn from modelling tasks. For instance, the Manlove,
Lazonder, and de Jong (2009) studies showed that students often
do not take full advantage of the support offered by regulative
scaffolds, which causes their performance to remain somewhat
poor. Likewise, Roscoe, Segedy, Sulcer, Jeong, and Biswas (2013)
provided students with hints that offered content feedback.
Although these hints were positively associated with students’
performance, students gradually came to rely on this tool. This was
considered a shallow strategy development, as it negatively
impacted the efficacy of the learning task. As such, offering direct
support has the risk of affecting students’ learning activities, but
not their learning outcomes. In a recent review, VanLehn (2013)
thus argues that scaffolds for learning should guide students
through the learning process instead of providing only content
feedback. Hence, students might benefit from a more explicit
account of what the activities in each model progression phase
entail and how they should be performed.

Such support could take the form of worked examples, which
have proved to be a fruitful means to enhance problem-solving
performance (e.g., Atkinson, Derry, Renkl, & Wortham, 2000;
Sweller & Cooper, 1985). Worked examples essentially include a
problem statement, a step-by-step account of the procedure to

solve the problem, and the final solution. Worked examples have
traditionally been applied to well-structured problems that have a
straightforward, algorithmic solution process. Research has shown
that studying a series of worked examples, either to prepare for
or instead of problem-solving practice, is more effective than
conventional, unsupported problem solving (see, for a review,
Atkinson et al., 2000; Sweller, Ayres, & Kalyuga, 2011). Other
studies have tried to optimize the presentation and use of worked
examples. To minimize shortcomings such as only rote recall of the
information, worked example instruction can be enhanced by
eliciting self-explanations (Atkinson, Renkl, & Merrill, 2003; Chi,
Bassok, Lewis, Reimann, & Glaser, 1989), presenting the rationale
behind the presented solution (van Gog, Paas, & van Merriënboer,
2008), or offering meta-level feedback (Moreno, Reisslein, &
Ozogul, 2009),

However, the effectiveness of problem-solving support methods
does not necessarily generalize to inquiry learning tasks. Inquiry
and modelling are iterative processes in which the scientific
reasoning skills of hypothesizing, experimenting, and evaluating
evidence are performed repeatedly. The nature of the hypotheses,
the way they are examined, and the outcomes of these in-
vestigations all determine what would be the next logical step in
order to induce and model the characteristics of the phenomenon
at hand (Klahr & Dunbar, 1988; White, Shimoda, & Frederiksen,
1999). Capturing this complex cognitive activity in a fixed, algo-
rithmic sequence of action steps would neither be possible nor
do justice to the true nature of the inquiry and modelling
processdand would therefore presumably cause students to
develop a limited understanding of the task content.

Hilbert and colleagues acknowledged this limitation of tradi-
tional worked examples, and proposed a variant that can be applied
in non-algorithmic problem-solving situations (Hilbert & Renkl,
2009; Hilbert, Renkl, Kessler, & Reiss, 2008). These so-called
heuristic worked examples do not emphasize the specific action
sequence students should follow to solve a problem, but exemplify
the heuristic reasoning underlying the choice and application
of this action sequence. This shift in focus has broadened the
application of worked examples from well-structured, algorithmic
problem-solving tasks to more ill-structured, and hence more
complex learning tasks. Recent reviews of worked-examples
research have demonstrated that heuristic worked examples can
be applied effectively in a variety of domains such as mathematical
proofs, concept mapping, and second language learning (Renkl,
Hilbert, & Schworm, 2009; Sweller et al., 2011).

Heuristic worked examples also hold promise for supporting
students’ inquiry and modelling activities. Both processes are
iterative by nature and require students to consider previously
performed activities and results in order to decide which actions to
perform next. These decisions have been found to be problematic
because students have an insufficient understanding of the inquiry
and modelling process (Mulder et al., 2011). Heuristic worked
examples could help alleviate this problem by exemplifying these
processes (i.e., hypothesis generation, experimentation, and
evidence evaluation) and showing the heuristic reasoning for
cycling through these processes effectively. As the design of infor-
mative simulation experiments is challenging for students (de Jong
& van Joolingen, 1998), explicit attention was given to the design of
unconfounded experiments using the Control-of-Variables Strategy
(CVS; Chen & Klahr, 1999). The heuristic worked examples also
show how the interpretation of data from these experiments can
subsequently lead to an (initial) understanding of the phenomenon,
which can then be represented and tested in a model. In this way,
students are shown how to set up systematic experiments with the
simulation, and how modelling can be integrated into the inquiry
process.
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