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Abstract 

The aim of this work is to derive quadrature formulas for nuclear reactor kinetic equations in the form of Volterra integral equations of 
the second kind and reactimeter equations in the form of integral convolution, the kernel of which is a decay function of delayed neutron 
precursors (DNP) in the non-group form. The expediency of the transition to integral equation s is caused by the unification of the direct 
(calculation of power dynamics) and the reverse (calculation of current reactivity) tasks of reactor kinetics. As a result, the solution is 
reduced to the calculation of the delayed neutrons integral (DNI). This eliminates the source of computational-experimental discrepancies in 
estimations of reactivity, which is due to the difference in computational algorithms of direct and inverse problems. The paper describes a 
general scheme for converting different transport equation approximations to describe the contribution of delayed neutrons by means of an 
integral convolution without using dynamic equations of the DNP concentration. This conversion reduces the model dimension, simplifies the 
software implementation, eliminates the stiffness problem of differential kinetic equations and provides the stability of calculations. The model 
dimension is preserved in the case of several fissile nuclides. The integral form of the equations makes it possible to use the experimental 
decay function in quadrature formulas, which can be identified in the operating conditions of a nuclear reactor and stored pointwise in a 
nongroup form without decomposition into the sum of exponentials. This eliminates the need to solve the non-linear problem of identifying 
group parameters of delayed neutrons and increases the adequacy of modeling. A series of quadrature formulas for the calculation of the 
DNI are obtained and the corresponding algorithms of a digital reactimeter and numerical simulation of the reactor kinetics are described. 
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Introduction 

In nuclear reactor physics much attention is paid to a com- 
parison and correlation of calculated and experimental esti- 
mations of reactivity [1–4] . Such a comparison characterizes 
the accuracy and adequacy of neutron-physical calculations 
in the design, operation, and maintenance of nuclear safety 

of NPPs. However, as is known [5] , differential equations for 
the description of the dynamics of delayed neutron precursors 
(DNP) are used in computational complexes, and the exper- 
imental estimation of reactivity is based on various versions 
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of the inverse kinetics equation, in which it is easy to show 

that the contribution of DNPs is described by the convolution 

integral. Accordingly, various schemes for solving differential 
equations are used for calculations in the first case 
[6–8] and the simplest quadrature formulas in the second case 
[9] . The difference between mathematical models is one of 
the reasons for the discrepancy between the calculated and 

experimental results. To eliminate this factor, it is advisable 
to unify the computational models to ensure the identity of 
the solution schemes of the direct (power output calculation) 
and inverse (current reactivity calculation) tasks of the nu- 
clear reactor neutron dynamics. Since the reactivity can be 
measured only by calculating the integral, the reactivity esti- 
mation in the computational modeling complexes must also be 
performed on the basis of integral equations using quadratures 
similar to those used in a digital reactimeter. More precisely, 
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the equations must be transformed to integral form, and the 
subsequent discretization should be performed in the same 
way in both the direct and inverse problems using both tra- 
ditional quadratures and other known approaches to solving 

integral equations [10,11] . 
The paper describes a general scheme for the rearrange- 

ment of various approximations of the transport equation to 

account for the contribution of delayed neutrons by means 
of the convolution integral. The proposed unification reduces 
the direct and inverse problems of kinetics to the calculation 

of the delayed neutron integral (DNI). A series of quadrature 
formulas for the calculation of the DNI are obtained and the 
corresponding design schemes for the realization of a digital 
reactimeter and numerical simulation of the kinetics of the re- 
actor are described. The stability condition for computations 
is found. 

Integro-differential and integral equations of neutron ki- 
netics have long been used in modeling nuclear reactors [6–
8,12–26] . The unification of the direct and inverse problems 
of nuclear reactor kinetics considered in this paper seems to 

provide a number of improvements in addition to the tradi- 
tional approaches, namely: 

• the model dimension decreases, only the observed quanti- 
ties appear in the model; 
• it becomes possible to use directly, as the kernel of the 

integral equation, the samples of the experimental DNP 

decay function; 
• the transition to integral equations removes the problem 

of the stiffness of differential equations of nuclear reactor 
kinetics; 
• it becomes possible to obtain interval estimations of reac- 

tivity on the basis of upper and lower integral sums [27] ; 
• the standard metrological analysis schemes [28] , based on 

convolution equations, become applicable for an analysis 
of reactimeter errors [29] . 

Unification of the direct and reverse problems of nuclear 
reactor dynamics 

The integral representation of the source of delayed neu- 
trons in the non-stationary transport equation is well known 

[17,30] and is written on the basis of the concept of the expo- 
nential character of decay of delayed neutron precursors in the 
following form (hereinafter all designations are standard): 

Q 

D (r, v, τ ) = 

∫ t 

0 
ϕ( r, v, τ ) 

J ∑ 

j=1 

χ j β j λ j e 
−λ j (t−τ ) dτ

+ 

J ∑ 

j=1 

λ j c j (r, 0) · e −λ j t . (1) 

Integral Summands ( 1 ) are solutions of the dynamic equa- 
tions of DNP concentrations in the corresponding groups: 

λ j c j (r, t ) = −∂ c j (r, t ) 
∂t 

+ 

∫ 

β j (υ
′ ) ν j (υ

′ ) 

×
 f j (r, v 

′ ) ϕ(r, v 

′ , t ) d v 

′ , (2) 

so that, in fact, these equations can be excluded from the 
computational schemes of the nonstationary transport equation 

since there is no special interest in the dynamics of DNP 

concentrations. We shall describe the elimination procedure 
for the non-stationary transport equation represented in the 
general form: 

1 

υ

∂ϕ(r, v, t ) 

∂t 
= Rϕ(r, v, t ) −

∑ 

j 

χ j (υ) 
∂ c j (r, t ) 

∂t 
. (3) 

Here, the change in DNP concentrations is taken into ac- 
count by the second term, and the operator R combines all 
other processes and is interpreted as a reactivity operator. This 
equation is obtained by replacing the generation rate of de- 
layed neutrons λj c j , which appears in the traditional form 

of the transport equation, by the expression for λj c j from 

Eq. (2) . 
The initial concentrations of the precursors c j ( r ,0) are de- 

termined from Eq. ( 2 ) under the assumption of the reactor 
stationary state, i.e., when ∂ c j / ∂ t = 0. Therefore, it is conve- 
nient to introduce into Eq. ( 2 ) the variable s j ≡ ∂ c j / ∂ t , for 
which these equations take the form of the balance of accel- 
erations of decay (generation) of the precursors: 

∂ s j (r, t ) 
∂t 

= −λ j s j (r, t ) + 

∫ 

β j (υ
′ ) ν j (υ

′ ) 

×
 f j (r, v 

′ ) ψ(r, v 

′ , t ) d v 

′ , 

where ( r , v , t ) ≡ ∂ ρ, v , t )/ ∂ t is the rate of change of the neutron 

flux density. The initial condition here becomes zero, s j ( r ,0) 
≡ 0, causing the following kind of solution: 

s j (r, t ) 

= 

∫ t 

0 
e −λ j (t−τ ) 

[∫ 

β j (υ
′ ) ν j (υ

′ ) 
 f j (r, v 

′ ) ψ(r, v 

′ , τ ) d v 

′ 
]

dτ. 

As a result, the problem of calculating the initial distri- 
bution of delayed neutron precursors is eliminated and the 
corresponding source of errors is eliminated. 

Substituting s j ≡ ∂ c j / ∂ t in Transfer Eq. (3) brings the latter 
into the form: 

1 

υ
ψ ( r, v , t ) = Rϕ ( r, v, t ) − I çí( r, t ) + Q (4) 

with the initial condition ( r , v , t ) = ( R ( r , v ,0) + Q ). The contribu- 
tion of delayed neutrons in Transport Eq. (4) is represented 

by the DNI: 

I 3H 

( r, t ) = 

∫ t 

0 

∫ 

W 

(
r, v 

′ , t − τ
)
ψ 

(
r, v 

′ , τ
)
d v 

′ dτ, (5) 

the kernel of which is: 

W (r, v 

′ , t − τ ) = 

∑ 

j 

χ j (υ) e −λ j (t−τ ) β j ( υ
′ ) ν j (υ

′ ) 
 f j (r, v 

′ ) . 

The described procedure for the change of variables is ap- 
plicable to the elimination of dynamic equations of DNP con- 
centrations in any approximations of the transport equation. 
In particular, it brings the system of differential point kinetic 
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