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Among the many approaches for reasoning about degrees of belief in the presence of noisy 
sensing and acting, the logical account proposed by Bacchus, Halpern, and Levesque is 
perhaps the most expressive. While their formalism is quite general, it is restricted to 
fluents whose values are drawn from discrete finite domains, as opposed to the continuous 
domains seen in many robotic applications. In this work, we show how this limitation in 
that approach can be lifted. By dealing seamlessly with both discrete distributions and 
continuous densities within a rich theory of action, we provide a very general logical 
specification of how belief should change after acting and sensing in complex noisy 
domains.

Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved.

1. Introduction

On numerous occasions it has been suggested that the formalism [the situation calculus] take uncertainty into account by attaching 
probabilities to its sentences. We agree that the formalism will eventually have to allow statements about the probabilities of events, 
but attaching probabilities to all statements has the following objections:
1. It is not clear how to attach probabilities to statements containing quantifiers in a way that corresponds to the amount of 

conviction people have.
2. The information necessary to assign numerical probabilities is not ordinarily available. Therefore, a formalism that required 

numerical probabilities would be epistemologically inadequate.
− McCarthy and Hayes [1].

Much of high-level AI research is concerned with the behavior of some putative agent, such as an autonomous robot, 
operating in an environment. Broadly speaking, an intelligent agent interacting with a dynamic and incompletely known 
world grapples with two special sorts of reasoning problems. First, because the world is dynamic, it will need to reason 
about change: how its actions affect the state of the world. Pushing an object on a table, for example, may cause it to fall 
on the floor, where it will remain unless picked up. Second, because the world is incompletely known, the agent will need 
to make do with partial specifications about what is true. As a result, the agent will often need to augment what it believes 
about the world by performing perceptual actions, using sensors of one form or another.
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Fig. 1. A simple robot.

For many AI applications, and robotics in particular, these reasoning problems are more involved. Here, it is not enough 
to deal with incomplete knowledge, where some formula φ might be unknown. One must also know which of φ or ¬φ is 
the more likely, and by how much. In addition, both the sensors and the effectors that the agent uses to modify its world 
are often subject to uncertainty in that they are noisy.

To see a very simple example, imagine a robot moving towards a wall as shown in Fig. 1, and a certain distance h from 
it. Suppose the robot can move towards and away from the wall, and it is equipped with a distance sensor aimed at the 
wall. Here, the robot may not know the true value of h but may believe that it takes values from some set, say {2, . . . ,11}. 
If the sensor is noisy, a reading of, say, 5 units, does not guarantee that the agent is actually 5 units from the wall, although 
it should serve to increase the agent’s degree of belief in that fact. Analogously, if the robot intends to move by 1 unit and 
the effector is noisy, it may end up moving by 0.9 units, which the agent does not get to observe. Be that as it may, the 
robot’s degree of belief that it is closer to the wall should increase.

While many proposals have appeared in the literature to address such concerns (cf. penultimate section), very few are 
embedded in a general theory of action whilst supporting features like disjunction and quantification. For example, graph-
ical models such as Bayesian networks can represent and reason about the probabilistic dependencies between random 
variables, and how that might change over time. However, it lacks first-order features and a rich account of actions. Re-
lational graphical models, including Markov logic networks [2], borrow devices from first-order logic to allow the succinct 
modeling of relational dependencies, but ultimately they are purely syntactic extensions to graphical models, and do not 
attempt to address the deeper issues pertaining to the specification of probabilities in the presence of logical connectives 
and quantifiers. Building on first-order accounts of probabilistic reasoning [3,4], perhaps the most general formalism for 
dealing with degrees of belief in formulas, and in particular, with how degrees of belief should evolve in the presence of 
noisy sensing and acting is the account proposed by Bacchus, Halpern, and Levesque [5], henceforth BHL. Among its many 
properties, the BHL model shows precisely how beliefs can be made less certain by acting with noisy effectors, but made 
more certain by sensing (even when the sensors themselves are noisy).

The main advantage of a logical account like BHL is that it allows a specification of belief that can be partial or incom-
plete, in keeping with whatever information is available about the application domain. It does not require specifying a prior 
distribution over some random variables from which posterior distributions are then calculated, as in Kalman filters, for 
example [6]. Nor does it require specifying the conditional independences among random variables and how these depen-
dencies change as the result of actions, as in the temporal extensions to Bayesian networks [7]. In the BHL model, some 
logical constraints are imposed on the initial state of belief. These constraints may be compatible with one or very many 
initial distributions and sets of independence assumptions. All the properties of belief will then follow at a corresponding 
level of specificity.

Subjective uncertainty is captured in the BHL account using a possible-world model of belief [8–10]. In classical possible-
world semantics, a formula φ is believed to be true when φ holds in all possible worlds that are deemed accessible. In BHL, 
the degree of belief in φ is defined as a normalized sum over the possible worlds where φ is true of some nonnegative 
weights associated with those worlds. (Inaccessible worlds are assigned a weight of zero.) To reason about belief change, 
the BHL model is then embedded in a rich theory of action and sensing provided by the situation calculus [1,11,12]. The 
BHL account provides axioms in the situation calculus regarding how the weight associated with a possible world changes 
as the result of acting and sensing. The properties of belief and belief change then emerge as a direct logical consequence 
of the initial constraints and these changes in weights.

For example, suppose h is a fluent representing the robot’s horizontal distance to the wall in Fig. 1. The fluent h would 
have different values in different possible worlds. In a BHL specification, each of these worlds might be given an initial 
weight. For example, a uniform distribution might give an equal weight of .1 to ten possible worlds where h ∈ {2, 3, . . . , 11}. 
The degree of belief in a formula like (h < 9) is then defined as a sum of the weights, and would lead here to a value of .7. 
The theory of action would then specify how these weights change as the result of acting (such as moving away or towards 
the wall) and sensing (such as obtaining a reading from a sonar aimed at the wall). Naturally, the logical language permits 
weaker specifications, involving disjunctions and quantifiers, and the appropriate behavior would still emerge.

While this model of belief is widely applicable, it does have one serious drawback: it is ultimately based on the addition 
of weights and is therefore restricted to fluents having discrete finite values. This is in stark contrast to robotics and ma-
chine learning applications [13–15], where event and observation variables are characterized by continuous distributions, or 
perhaps combinations of discrete and continuous ones. There is no way to say in BHL that the initial value of h is any real 
number drawn from a uniform distribution on the interval [2, 12]. One would again expect the belief in (h < 9) to be .7, 
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