
Artificial Intelligence 239 (2016) 7–53

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Data repair of inconsistent nonmonotonic description logic 

programs ✩

Thomas Eiter, Michael Fink, Daria Stepanova ∗

Institute of Information Systems, Vienna University of Technology, Vienna, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 June 2015
Received in revised form 10 June 2016
Accepted 12 June 2016
Available online 15 June 2016

Keywords:
Rules and ontologies
Answer set programming
Description logics
Inconsistency management
Nonmonotonic reasoning

Combining Description Logic (DL) ontologies and nonmonotonic rules has gained increasing 
attention in the past decade, due to the growing range of applications of DLs. A well-known 
proposal for such a combination are non-monotonic DL-programs, which support rule-
based reasoning on top of DL ontologies in a loose coupling, using a well-defined query 
interface. However, inconsistency may easily arise as a result of the interaction of the rules 
and the ontology, such that no answer set (i.e., model) of a DL-program exists; this makes 
the program useless. To overcome this problem, we present a framework for repairing 
inconsistencies in DL-programs by exchanging formulas of an ontology formulated in 
DL-LiteA, which is a prominent DL that allows for tractable reasoning. Viewing the data 
part of the ontology as a source of inconsistency, we define program repairs and repair 
answer sets based on them. We analyze the complexity of the notion, and we extend 
an algorithm for evaluating DL-programs to compute repair answer sets, under optional 
selection of preferred repairs that satisfy additional constraints. The algorithm induces a 
generalized ontology repair problem, in which the entailment respectively non-entailment 
of queries to the ontology, subject to possible updates, must be achieved by a data 
change. While this problem is intractable in general, we identify several tractable classes of 
preferred repairs that are useful in practice. For the class of deletion repairs among them, 
we optimize the algorithm by reducing query evaluation to constraint matching, based 
on the novel concept of support set, which roughly speaking is a portion of the data from 
which entailment of an ontology query follows. Our repair approach is implemented within 
an answer set program system, using a declarative method for repair computation. An 
experimental evaluation on a suite of benchmark problems shows the effectiveness of our 
approach and promising results, both regarding performance and quality of the obtained 
repairs. While we concentrate on DL-LiteA ontologies, our notions extend to other DLs, for 
which more general computation approaches may be used.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Description Logics (DLs) [4], which emerged from semantic networks with the goal to equip respective formalisms with 
a clear formal semantics based on logic, nowadays play a dominant role among formalisms for Knowledge Representation 

✩ Some of the results were presented in preliminary form at IJCAI 2013 [33] and ECAI 2014 [35]. This work has been supported by the Austrian Science 
Fund (FWF) project P24090.

* Corresponding author.
E-mail addresses: eiter@kr.tuwien.ac.at (T. Eiter), fink@kr.tuwien.ac.at (M. Fink), dasha@kr.tuwien.ac.at (D. Stepanova).

http://dx.doi.org/10.1016/j.artint.2016.06.003
0004-3702/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2016.06.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:eiter@kr.tuwien.ac.at
mailto:fink@kr.tuwien.ac.at
mailto:dasha@kr.tuwien.ac.at
http://dx.doi.org/10.1016/j.artint.2016.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2016.06.003&domain=pdf


8 T. Eiter et al. / Artificial Intelligence 239 (2016) 7–53

O =

⎧⎨
⎩

(1) Child � ∃hasParent (4) Male(pat)
(2) Adopted � Child (5) Male(john)

(3) Female � ¬Male (6) hasParent(john,pat)

⎫⎬
⎭

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7) ischildof (john,alex); (8) boy(john);
(9) hasfather(X, Y ) ← DL[Male � boy; Male](Y ),DL[; hasParent](X, Y );
(10) ⊥ ← not DL[; Adopted](X), Y1 �= Y2,hasfather(X, Y1),

ischildof (X, Y2),not DL[Child � boy; ¬Male](Y2);
(11) contact(X, Y ) ← DL[; hasParent](X, Y ),not omit(X, Y );
(12) omit(X, Y ) ← DL[; Adopted](X), Y �= Z ,hasfather(X, Y ), contact(X, Z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 1. DL-program � over a family ontology.

and Reasoning (KRR). As such, DLs are geared towards describing domains in terms of concepts that map to sets of domain 
objects and their relations, as well as roles that capture relationships among domain objects. This makes DLs well-suited 
for representing ontologies formally and to reason about them, which has a central role in the Semantic Web vision [9]; 
indeed, DLs provide the formal underpinning of the Web Ontology Language (OWL), a recommended standard for expressing 
ontological knowledge on the web. Fueled by the success in this area, DLs have been successfully deployed to many other 
contexts and applications, among them reasoning about actions [6], data integration and ontology based data access [20,19], 
spatial reasoning [69], runtime verification and program analysis [2,53], and many others.

Most DL ontologies are fragments of classical first-order logic, and as such lack sufficient expressiveness for the require-
ments of certain problems; for instance, they cannot model closed-world reasoning, nor can they express nonmonotonicity; 
these features are often essential in practical application scenarios. Furthermore, DLs do not offer rules, which are popular 
in practical knowledge representation and serve a complementary aspect: while DLs are focused on specifying and rea-
soning about conceptual knowledge, logic rules serve well for reasoning about individuals; furthermore they target issues 
associated with nonmonotonic inference as well as non-determinism. To overcome these shortcomings, several extensions of 
DLs have been developed, e.g. [80,5,26,27,65,15,23,52,47,14] and various notions of hybrid knowledge bases (KBs) have been 
proposed to get the best out of the DL and rules worlds by combining them (see [66] and references therein). Among them, 
Nonmonotonic Description Logic (DL-)programs [37] are the most prominent approach for a loose coupling between the rules 
and the ontology via so-called DL-atoms, which serve as query interfaces to the ontology that support information hiding 
and the use of legacy software (i.e., ontology reasoners). The possibility to add information from the rules part prior to 
query evaluation allows for adaptive combinations.

Example 1. Consider the DL-program � in Fig. 1, which captures information about children of a primary school and 
their parents in simplistic form. It is given as a pair � = 〈O, P〉 of an ontology O and a set of rules P . The ontology 
O contains a taxonomy T of concepts (i.e., classes) in (1)–(3) and factual data (i.e., assertions) A about some individuals 
in (4)–(6). Intuitively, T states that every child has a parent, adopted child is a child, and male and female are disjoint. 
The rules P contain some further facts (7), (8) and proper rules: (9) determines fathers from the ontology, upon feeding 
information to it; (10) checks, informally, against them for local parent information (ischildof ) the constraint that a child 
has for sure at most one father, unless it is adopted (where ⊥ stands for falsity); finally (11)–(12) single out contact 
persons for children, which by default are the parents; for adopted children, fathers from the ontology are omitted if some 
other contact exists. The rules and the ontology interact via DL-atoms, which are the expressions starting with “DL”; e.g., 
DL[Male � boy; Male](X) informally selects all individuals c, such that Male(c) is provable from O after temporarily adding 
for boys the assertions that they are male in the ontology.

The semantics of DL-programs was given in the seminal paper [37] in terms of answer sets, as a generalization of 
the answer set semantics of nonmonotonic logic programs [46]. In this way, DL-programs are an extension of answer 
set programming (ASP) [18] in which the user can evaluate in the rules queries over an ontology via DL-atoms. Notably, 
DL-atoms enable a bidirectional information flow between the rules and the ontology, which may even be cyclic; this makes 
DL-programs quite expressive, and allows one to formulate advanced reasoning applications on ontologies, such as extended 
closed-world or terminological default reasoning [37].

On the other hand, the information flow can lead to inconsistency, i.e., that no answer set of the DL-program exists, even 
if the ontology and rules are perfectly consistent when considered separately; this happens in the example above, where the 
DL-program has no answer set. An inconsistent DL-program yields no information and is of no use for constructive problem 
solving; it may be viewed as broken and in need of an appropriate management of this situation. Systems for evaluating 
DL-programs, among them dlvhex1 and DReW,2 however can not resolve inconsistencies easily; this is clearly a drawback 
for their deployment to applications.

1 www.kr.tuwien.ac.at/research/systems/dlvhex.
2 www.kr.tuwien.ac.at/research/systems/drew.

http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.kr.tuwien.ac.at/research/systems/drew


Download English Version:

https://daneshyari.com/en/article/6853075

Download Persian Version:

https://daneshyari.com/article/6853075

Daneshyari.com

https://daneshyari.com/en/article/6853075
https://daneshyari.com/article/6853075
https://daneshyari.com

