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A binary CSP instance satisfying the broken-triangle property (BTP) can be solved in 
polynomial time. Unfortunately, in practice, few instances satisfy the BTP. We show that 
a local version of the BTP allows the merging of domain values in arbitrary instances 
of binary CSP, thus providing a novel polynomial-time reduction operation. Extensive 
experimental trials on benchmark instances demonstrate a significant decrease in instance 
size for certain classes of problems. We show that BTP-merging can be generalised to 
instances with constraints of arbitrary arity and we investigate the theoretical relationship 
with resolution in SAT. A directional version of general-arity BTP-merging then allows us 
to extend the BTP tractable class previously defined only for binary CSP. We investigate the 
complexity of several related problems including the recognition problem for the general-
arity BTP class when the variable order is unknown, finding an optimal order in which to 
apply BTP merges and detecting BTP-merges in the presence of global constraints such as 
AllDifferent.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

At first sight one could assume that the discipline of constraint programming has come of age. On the one hand, efficient 
solvers are regularly used to solve real-world problems in diverse application domains while, on the other hand, a rich 
theory has been developed concerning, among other things, global constraints, tractable classes, reduction operations and 
symmetry. However, there often remains a large gap between theory and practice, which is perhaps most evident when we 
look at the large number of deep results concerning tractable classes which have yet to find any practical application. The 
research reported in this paper is part of a long-term project to bridge the gap between theory and practice. Our aim is not 
only to develop new tools but also to explain why present tools work so well.

Most research on tractable classes has been based on classes defined by placing restrictions either on the types of con-
straints [1,2] or on the constraint hyper-graph whose vertices are the variables and whose hyper-edges are the constraint 
scopes [3,4]. Another way of defining classes of binary CSP instances consists of imposing conditions on the microstruc-
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ture, a graph whose vertices are the possible variable-value assignments with an edge linking each pair of compatible 
assignments [5,6]. If each vertex of the microstructure, corresponding to a variable-value assignment 〈x, a〉, is labelled (or 
coloured) by the variable x, then this so-called coloured microstructure retains all information from the original instance. 
The broken-triangle property (BTP) is a simple local condition on the coloured microstructure which defines a tractable 
class of binary CSP [7]. The BTP corresponds to forbidding a simple pattern, known as a broken triangle, in the coloured 
microstructure for a given variable order. Inspired by the BTP, investigation of other forbidden patterns in the coloured mi-
crostructure has led to the discovery of new tractable classes [8–10] as well as new reduction operations based on variable 
or value elimination [11,12]. The BTP itself has also been directly generalised in several different ways. For example, it has 
been shown that under an assumption of strong path consistency, the BTP can be considerably relaxed since not all broken 
triangles need be forbidden to define a tractable class [13–15]. Indeed, even without any assumptions of consistency, it is 
not necessary to forbid all broken triangles [12]. Imposing the BTP in the dual problem leads directly to a tractable class of 
general-arity CSPs [16]. The BTP has also been generalised to the Broken Angle Property which defines a tractable class of 
Quantified Constraint Satisfaction Problems [17].

In this paper we show that the absence of broken triangles on a pair of values in a domain allows us to merge these two 
values while preserving the satisfiability of the instance. Furthermore, given a solution to the reduced instance, it is possible 
to find a solution to the original instance in linear time (Section 3). We then investigate the interactions between arc 
consistency and BTP-merging operations (Section 4) and show that it is NP-hard to find the best sequence of BTP-merging 
(and arc consistency) operations (Section 5). The effectiveness of BTP-merging in reducing domains in binary CSP benchmark 
problems is investigated in Section 6. In the second half of the paper we consider general-arity CSPs. Section 7 shows how 
to generalise BTP-merging to instances containing constraints of any arity (where all constraints are given in the form of 
either tables, lists of compatible tuples or lists of incompatible tuples). We then go on to consider global constraints, and in 
particular the AllDifferent constraint, in Section 8. Finally, a directional version of the general-arity BTP allows us to define 
a tractable class of general-arity CSP instances which is incomparable with the tractable class obtained by directly imposing 
the BTP in the dual [16] (Section 9). However, on the negative side, we then show that it is NP-complete to determine 
the existence of a variable order for which an instance falls into this tractable class. The results of Sections 3, 7, 9 and 
Sections 4, 5 first appeared in two conference papers (respectively [18] and [19]).

2. The Constraint Satisfaction Problem

For simplicity of presentation we use two different representations of constraint satisfaction problems. In the binary 
case, our notation is fairly standard, whereas in the general-arity case we use a notation close to the representation of SAT 
instances. This is for presentation only, though, and our algorithms do not need instances to be represented in this manner.

Definition 1. A binary CSP instance I consists of

• a set X of n variables,
• a domain D(x) of possible values for each variable x ∈ X ,
• a relation Rxy ⊆ D(x) × D(y), for each pair of distinct variables x, y ∈ X , which consists of the set of compatible pairs 

of values (a, b) for variables (x, y).

A partial solution to I on Y = {y1, . . . , yr} ⊆ X is a set {〈y1, a1〉, . . . , 〈yr, ar〉} such that ∀i, j ∈ [1, r], (ai, a j) ∈ R yi y j . A solution
to I is a partial solution on X .

For simplicity of presentation, Definition 1 assumes that there is exactly one constraint relation for each pair of variables. 
The number of constraints e is the number of pairs of variables x, y such that Rxy �= D(x) × D(y). An instance I is arc 
consistent if for each pair of distinct variables x, y ∈ X , each value a ∈ D(x) has an AC-support at y, i.e. a value b ∈ D(y)

such that (a, b) ∈ Rxy .
In our representation of general-arity CSP instances, we require the notion of tuple which is simply a set of variable-value 

assignments. For example, in the binary case, the tuple {〈x, a〉, 〈y, b〉} is compatible if (a, b) ∈ Rxy and incompatible otherwise.

Definition 2. A (general-arity) CSP instance I consists of

• a set X of n variables,
• a domain D(x) of possible values for each variable x ∈ X ,
• a set NoGoods(I) consisting of incompatible tuples.

A partial solution to I on Y = {y1, . . . , yr} ⊆ X is a tuple t = {〈y1, a1〉, . . . , 〈yr, ar〉} such that no subset of t belongs to 
NoGoods(I). A solution is a partial solution on X .
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