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This paper presents a meta-objective optimization approach, called Bi-Goal Evolution 
(BiGE), to deal with multi-objective optimization problems with many objectives. In multi-
objective optimization, it is generally observed that 1) the conflict between the proximity 
and diversity requirements is aggravated with the increase of the number of objectives and 
2) the Pareto dominance loses its effectiveness for a high-dimensional space but works 
well on a low-dimensional space. Inspired by these two observations, BiGE converts a 
given multi-objective optimization problem into a bi-goal (objective) optimization problem 
regarding proximity and diversity, and then handles it using the Pareto dominance relation 
in this bi-goal domain. Implemented with estimation methods of individuals’ performance 
and the classic Pareto nondominated sorting procedure, BiGE divides individuals into 
different nondominated layers and attempts to put well-converged and well-distributed 
individuals into the first few layers. From a series of extensive experiments on four 
groups of well-defined continuous and combinatorial optimization problems with 5, 10 
and 15 objectives, BiGE has been found to be very competitive against five state-of-the-art 
algorithms in balancing proximity and diversity. The proposed approach is the first step 
towards a new way of addressing many-objective problems as well as indicating several 
important issues for future development of this type of algorithms.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Real-world problems commonly involve multiple objectives/criteria which are required to be optimized simultaneously. 
For example, an individual would like to maximize the chance of being healthy and wealthy while still having fun and 
time for family and friends. A software engineer would be interested in finding the cheapest test suite while achieving 
full coverage (e.g., statement coverage, branch coverage and decision coverage). When prescribing radiotherapy to a cancer 
patient, a doctor would have to balance the attack on tumor, potential impact on healthy organs, and the overall condition of 
the patient. These multi-objective optimization problems (MOPs) can be seen in many fields, including engineering, science, 
medicine and logistics. They share the same issue of pursuing several objectives at the same time, and have long been 
regarded as a substantial challenge in artificial intelligence (AI) [73,25].

There have been a variety of approaches for MOPs, including traditional mathematical programming methods, local 
search techniques, and evolutionary algorithms (EAs). Inspired by biological evolution mechanisms, EAs have been demon-
strated to be successful in diverse AI applications [73,10]. For example, an EA-based AI planner, Divide and Evolutionary 
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(DaE) [8], won the Deterministic Temporal Satisficing track during the International Planning Competition (IPC7) at the 
21st International Conference on Automated Planning and Scheduling (ICAPS 2011).1 Recently, DaE has been successfully 
applied to multi-objective AI planning (called MO-DaE) [58]. MO-DaE, working with a well-known multi-objective EA, i.e., 
the indicator-based EA (IBEA) [99], has shown clear advantage over the metric-based approach using LPG metric sensitive 
planner [58].

A key strength of EAs for MOPs is their population-based feature which allows individuals to simultaneously approximate 
different parts of the Pareto front within a single execution [19,97]. Intuitively, the search process of an EA has two basic 
goals:

• minimizing the distance of the population to the Pareto front (i.e., proximity) and
• maximizing the distribution of the population along the Pareto front (i.e., diversity).

Since the optimal outcome of an MOP is a set of Pareto optimal solutions, the Pareto dominance relation naturally 
becomes a criterion to distinguish between solutions. Given two solutions p and q for an MOP, p is said to Pareto dominate q, 
if and only if p is better than q for at least one objective and is not worse for any of the others. The Pareto dominance 
reflects the weakest assumption about the preferred structure of the decision-maker.

As the primary selection criterion in the evolutionary multi-objective optimization (EMO) area, Pareto dominance is 
commonly used to evaluate the proximity of solutions. When Pareto dominance fails (e.g., the interested solutions are non-
dominated to each other), EMO algorithms often introduce a density-based criterion to maintain diversity of the population. 
For example, the nondominated sorting genetic algorithm II (NSGA-II) [23] separates individuals in a population into dif-
ferent layers (ranks) by their Pareto dominance relation, and prefers 1) individuals in lower layers and 2) individuals with 
lower crowding degrees (measured by the crowding distance [23]) when they are located in the same layer.

An MOP with more than three objectives is called a many-objective optimization problem. Many-objective optimization 
is an important but very challenging topic and there has been increasing interest in the use of EAs to tackle many-objective 
optimization problems [14,16,26,35]. Although Pareto-based algorithms are the most popular approaches, they scale up 
poorly with the number of objectives [18,48,75]. When dealing with an MOP with many objectives, Pareto dominance often 
loses its effectiveness to differentiate individuals [57], which makes most individuals in a population become incomparable 
in terms of proximity (e.g., in NSGA-II most individuals fall into the first layer). Consequently, the density-based selection 
criterion will play a decisive role in determining the survival of individuals during the evolutionary process, leading to the 
individuals in the final population distributed widely over the objective space but far from the desired Pareto front [85].

A straightforward way to handle this problem (i.e., the ineffectiveness of Pareto-based algorithms in many-objective opti-
mization) is to modify the Pareto dominance relation. Some interesting attempts include loosening the dominance condition 
or controlling the dominance angle, such as ε-dominance [22,36,61,84], α-dominance [43], ε-box dominance [60], and dom-
inance area control [78]. By relaxing the area of an individual dominating, these dominance relations are able to provide 
sufficient selection pressure towards the Pareto front. However, how to set a proper value of the parameter(s) to determine 
the relaxation degree is a crucial issue in these methods, needing further studies [62,69,79].

On the other hand, the way of comparing individuals according to their quantitative difference in objectives has been 
found to be effective in converging towards the Pareto front. Many recent EMO algorithms originate from this motivation, 
introducing a variety of new criteria to distinguish between individuals, e.g., average ranking [52,70], fuzzy Pareto optimality 
[37,39], subspace partition [2,51], preference-inspired rank [88,87], grid-based rank [70,92], distance-based rank [32,71,91], 
and density adjustment strategies [1,66]. These methods provide ample alternatives to deal with many-objective optimiza-
tion problems, despite some having the risk of leading the population to concentrate in one or several sub-areas of the 
whole Pareto front [50,67,81,65].

Recently, there has been significant interest in the use of selection criteria that involve both proximity and diversity to 
solve MOPs. Some such criteria, like the decomposition-based [94] and indicator-based [99] criteria, have been shown to 
be very promising in many-objective optimization [15,20,41,44,85]. The former uses the idea of single-objective aggregated 
optimization, decomposing an MOP into a number of scalar subproblems and optimizing them simultaneously. The latter 
defines an optimization criterion with regard to a specified performance indicator and uses this criterion to guide the search 
of the population. The indicator hypervolume is one of the most popular indicator-based criteria due to its good theoretical 
and empirical properties [7,13,29,42,101]. Whereas super-polynomial time complexity is required in the calculation of the 
hypervolume indicator (unless P = N P ) [11], lots of effort is being made to reduce its computational cost, in terms of both 
the exact computation [6,12,90] and the approximate estimation [4,14,49]. Nevertheless, balancing proximity and diversity 
using one single criterion is not an easy task [76,38,69,68], especially for a many-objective optimization problem in which 
the conflict between the objectives is generally more serious than that in an MOP with two or three objectives [75,1].

In fact, evolving a population towards the optimum as well as diversifying its individuals over the whole Pareto front in 
many-objective optimization is, by itself, a multi-objective problem. The advance at one aspect usually comes along with 
the degradation at the other [33,75].
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