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A B S T R A C T

There is an ever-increasing need for autonomous robots that are capable of adapting to and operating in chal-
lenging partially-observable and stochastic environments. Standard techniques for autonomous learning in such
environments are often fundamentally reliant on human-engineered features, one of the most important of
which is an a priori specification of the agent’s state space. Designing an appropriate state space demands ex-
tensive domain knowledge, and even minor changes to the task or the agent might necessitate re-engineering.
These limitations have given rise to end-to-end, predictive approaches, such as Predictive State Representations
(PSRs) and our Stochastic Distinguishing Experiments (SDEs), that learn a representation of state encoded in the
probabilities of key sequences of raw actions and observations (i.e., experiments the agent can perform).
Discovering these experiments remains a key challenge, in part because existing techniques lack a formal re-
lationship between predictive experiments and latent states in the agent’s model of its environment. In this
paper, we extend our SDE representation into a novel hybrid latent-predictive cognitive architecture in which each
latent state is created and uniquely represented by the result of a predictive experiment that statistically distin-
guishes it from other states. We prove that deterministic environments and a useful subclass of POMDP en-
vironments can be perfectly represented with equivalent compactness by such models and provide an active
algorithm for autonomously learning such models in unknown environments from experience based on the
biologically-inspired notion of surprises. The agent begins using only its observations as a state space and splits
those states into a hierarchy of additional latent states when it is surprised by high entropy resulting from
repeatedly executing experiments that are automatically designed and selected to statistically disambiguate
identical-looking states. We present experimental results demonstrating the feasibility of this learning procedure.

Introduction

There is an ever-increasing demand for autonomous robotic systems
that are able to adapt to and operate in a range of challenging real-
world environments. The environments in which such systems are to
operate vary substantially, but almost all environments of interest ex-
hibit high levels of partial-observability – meaning that the robot cannot
directly sense all the salient aspects of its environment – and stochas-
ticity – meaning that its actions and observations are noisy, uncertain,
and nondeterministic. The combination of these factors makes learning
particularly challenging, because it is difficult for the agent to dis-
ambiguate environmental noise from situations in which its model has
failed to capture something important about the latent structure of its
environment. Nevertheless, a host of biological life on Earth has suc-
cessfully adapted to learning in the face of rampant partial-ob-
servability and stochasticity, which suggests that biologically-inspired
methods might be a particularly powerful way to approach this pro-
blem.

In this paper, we make important theoretical progress by addressing
a problem called autonomous learning from the environment (ALFE, first
formulated in Shen, 1993a), in which an embodied agent is placed in an
unknown discrete, partially-observable, stochastic environment and
must build a task-independent model of the state and state dynamics of
this environment from its experience, given the actions it can take and
the observations it can make about its environment. The agent is not
able to reset itself to a known state and has no prior knowledge about
the number of underlying environment states or the expected results of
executing its actions. The most distinguishing aspect of this problem is
that the agent must decide simultaneously and autonomously both what
actions to take in the absence of any external rewards and how much
experience is sufficient to build a useful model.

In previous work, we introduced the Stochastic Distinguishing
Experiments (SDEs, Collins & Shen, 2017) cognitive architecture as an
approximate and purely predictive representation of state and state dy-
namics and provided a provably-convergent algorithm for actively
learning an SDE model of unknown partially-observable and stochastic
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environments based on the biologically-inspired notion of surprises. The
resulting model could be used by the agent to approximate the history-
dependent probability of any sequence of observations given any se-
quence of input actions. However, the connection between SDEs and
the state space of the agent’s environment model, the representational
capacity of the SDE model (i.e., the types of environments SDE models
could represent perfectly), and the applicability of existing POMDP
planning and reinforcement learning techniques to SDE models were
left as important future work.

In this paper, we extend our SDE representation into a novel hybrid
latent-predictive cognitive architecture, called the surprise-based partially-
observable Markov decision process (sPOMDP), which is a partially-ob-
servable Markov decision process (POMDP, Kaelbling, Littman, &
Cassandra, 1998) in which each latent state is uniquely represented by a
maximally-probable predictive sequence of observations created by ex-
ecuting an associated Stochastic Distinguishing Experiment (SDE) from
that state. Differences in these observation sequences can be used to
statistically disambiguate identical-looking states. sPOMDPs, like other
predictive models (e.g., Predictive State Representations, Littman &
Sutton, 2002), are grounded in the raw actions and observations of the
agent, enabling end-to-end learning that requires few, if any, human-
engineered features; however, in contrast to other predictive models,
sPOMDPs can also be used as traditional POMDPs, so state-of-the-art
POMDP planning and reinforcement learning techniques can be applied
straightforwardly.

We prove that Moore Machine (Moore, 1956) environments and a
useful subclass of POMDP environments in which the agent experiences
uniform noise around its most likely transitions and observations can be
perfectly represented by sPOMDPs no larger than the minimal re-
presentations of these environments, thereby answering an important
open theoretical question regarding the representational capacity of
SDEs (Collins & Shen, 2017) and their precursors in the surprise-based
learning literature (Shen, 1994). These theoretical results are used to
develop a novel algorithm for the active, incremental learning of
sPOMDP models from experience based on the biologically-inspired
notion of surprises. The key idea is that the agent begins using only its
observations as a state space and splits those states into a hierarchy of
additional latent states when it is surprised by the high amount of en-
tropy resulting from repeatedly executing the SDEs in its sPOMDP
model. We provide experimental results demonstrating the feasibility of
this learning procedure and compare its performance to the state-of-
the-art purely predictive SDE model we presented in Collins and Shen
(2017).

Related work

At a high level, this work is related to the problem of representation
learning, which includes automatic feature extraction as a subproblem.
Representation learning is currently dominated by research in prob-
abilistic graphical models (Koller & Friedman, 2009) and deep neural
networks (Goodfellow, Bengio, & Courville, 2016). These techniques
have achieved tremendous success in signal processing, speech re-
cognition, object recognition, artificial intelligence, natural language
processing, etc. (Bengio, Courville, & Vincent, 2013). The success of
deep reinforcement learning in playing Atari games above a human
expert level (Mnih et al., 2015) and navigating complex, physics-based,
3D terrains (Heess et al., 2017) using raw pixel and sensor input are
particularly powerful recent examples of what deep representations can
accomplish. Nevertheless, the architecture and the number of hidden
units and layers in deep neural network models continue to be im-
portant inputs that often require extensive manual tuning to yield high-
quality results. In recurrent neural networks (RNNs) modeling dyna-
mical systems, for example, the number of hidden units determines the
number of underlying system states postulated (Goodfellow et al., 2016,
Chapter 10), which is not available in most real-world situations
without extensive human engineering. In contrast, the state space of an

sPOMDP model grows nonparametrically with agent experience.
Similarly, Dynamic Bayesian Networks (DBNs), which include

Hidden Markov Models (HMMs) as a special case (Koller & Friedman,
2009, Chapter 6), require an a priori specification of state variables,
possible values, and their interconnections over time. Recent work such
as the infinite Dynamic Bayesian Network (iDBN, Doshi, Wingate,
Tenenbaum, & Roy, 2011) seeks to overcome this issue by using a
Bayesian nonparametric model to place a prior over an unbounded
number of possible DBN structures and using Markov Chain Monte
Carlo (MCMC, Andrieu, De Freitas, Doucet, & Jordan, 2003) techniques
to approximately infer the posterior over possible model structures
given the observed data. This work differs fundamentally from
sPOMDPs in that it does not consider the role of agent actions in the
learning process.

A similar nonparametric model more closely related to the current
work was proposed for learning a state representation of unknown
POMDPs called the infinite Partially-observable Markov Decision
Process (iPOMDP, Doshi-Velez, 2009; Doshi-Velez, Pfau, Wood, & Roy,
2015). One crucial difference between iPOMDPs and our sPOMDPs is
that sPOMDPs do not require an external reward function for action
selection: iPOMDPs require an expensive forward-looking search tree at
every time step to select an approximately optimal next action based on
a given reward function. This action selection routine also requires the
offline solving of candidate POMDPs to estimate the Q values of various
actions. In contrast, sPOMDP learning selects actions based on the
amount of entropy resulting from the repeated execution of auto-
matically designed and selected experiments, with all steps of the
learning process executed in an online, incremental fashion.

Much of the research on POMDPs focuses on discrete POMDPs and
is in the area of reinforcement learning (RL), where the goal is generally
not to construct a state representation but rather to learn an optimal
policy (and often the POMDP’s dynamics). In almost every case, the
agent is given a known state space. Traditional exact and approximate
techniques for solving POMDPs for optimal policies include Murphy
(2000), Pineau, Gordon, and Thrun (2003), and Roy, Gordon, and
Thrun (2005). One of the most prominent exceptions is the family of
instance-based (IB) RL methods (Liu, Jin, & She, 2016; McCallum,
1995, 1996; McCallum, Tesauro, Touretzky, & Leen, 1995), which
memorize interactions with their environment and organize them into a
suffix tree of actions and observations in a way that approximates an
unknown discrete or continuous state space nonparametrically (in a
task-specific way). Determining a memory size large enough to contain
enough representative samples for good probability estimates can be
challenging, and, in contrast to sPOMDP learning, a reward function is
needed to guide the agent’s actions.

There is a line of more recent work that sits at an interesting in-
tersection between reinforcement learning, deep neural networks, and
representation learning that also leverages mismatches between ex-
pected and actual sensory feedback in response to actions (similar in
some ways to our notion of a surprise). This work can be broadly clas-
sified as reinforcement learning via intrinsic motivation (Barto, Singh, &
Chentanez, 2004; Chentanez, Barto, & Singh, 2005; Mohamed &
Rezende, 2015; Oudeyer & Kaplan, 2009; Oudeyer, Kaplan, & Hafner,
2007) and reinforcement learning via artificial curiosity (Frank, Leitner,
Stollenga, Förster, & Schmidhuber, 2013; Pathak, Agrawal, Efros, &
Darrell, 2017; Storck, Hochreiter, & Schmidhuber, 1995). The unifying
theme of these approaches is that, since external rewards are often
sparse in practice (if they exist at all), RL agents should use self-defined
(intrinsic) or goal-independent metrics to evaluate their own perfor-
mance and push themselves into novel situations in order to develop a
hierarchy of skills that are broadly useful across a wide range of tasks.
However, these approaches rely on a human-designed state space as
input, making the problem being solved fundamentally different than
that addressed in this work, in which the state space itself (and its
dynamics) must be learned from experience.

Predictive state representations (PSRs, Littman & Sutton, 2002)
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