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A B S T R A C T

We present an online system for real time recognition of actions involving objects working in online mode. The
system merges two streams of information processing running in parallel. One is carried out by a hierarchical
self-organizing map (SOM) system that recognizes the performed actions by analysing the spatial trajectories of
the agent’s movements. It consists of two layers of SOMs and a custom made supervised neural network. The
activation sequences in the first layer SOM represent the sequences of significant postures of the agent during the
performance of actions. These activation sequences are subsequently recoded and clustered in the second layer
SOM, and then labeled by the activity in the third layer custom made supervised neural network. The second
information processing stream is carried out by a second system that determines which object among several in
the agent’s vicinity the action is applied to. This is achieved by applying a proximity measure. The presented
method combines the two information processing streams to determine what action the agent performed and on
what object. The action recognition system has been tested with excellent performance.

Introduction

Action recognition plays an important role in interactions between
any agents whether they are humans, animals or robots. Johansson
(1973) showed by using a patch light technique that humans can
identify an action after only about two hundred milliseconds. Such an
efficient mechanism for interpreting and categorizing a perceived ac-
tion is an important factor behind smooth interaction and cooperation
between humans. His studies opened up the field of biological motion
within psychology.

Later studies of human categorizations of actions have shown a
number of features that are relevant also for robotic models. Firstly,
categorizations of actions exhibit the same prototype effects as cate-
gorizations of objects (Hemeren, 2008). Secondly, actions can be ca-
tegorized in terms of the force patterns involved
(Gärdenfors &Warglien, 2012; Gärdenfors, 2014; Runesson, 1994). In
other words, the dynamics of an action may be more characteristic than
its kinematics. Thirdly, human judgments concerning the segmentation
of actions show large agreements (Radvansky & Zacks, 2014).

Given the efficiency of the human action recognition system, it
should serve as an inspiration when developing fast and robust methods
for action recognition that can be employed in social robotic systems
that are interacting with humans online. The general task for such a
robotic system is to use online visual data from cameras to track

movements of humans and to use this information to categorize actions
and then generate an appropriate response, linguistic or non-linguistic.
It should be noted, however, that online automatic action recognition is
not only useful for human-robot interaction, but also for areas such as
video surveillance, human–computer interaction, video retrieval, sign
language recognition, medical health care and sport.

In this article we present a biologically inspired system for online
action recognition that merges the information analyses from two
subsystems running in parallel. To some extent, our architecture is in-
spired by the two-streams hypothesis about how the brains processes
visual information (Goodale &Milner, 1992). This hypothesis distin-
guishes between a ventral stream (the what pathway) and a dorsal
stream (the where or how pathway). Our two subsystems can be seen as
corresponding to these two streams. The first subsystem determines
which object the agent acts on by applying a proximity measure (our
system, however, takes a shortcut when identifying objects). The
second subsystem recognizes what action is performed by using a
hierarchical self-organizing map system that analyses the spatial tra-
jectories of the agent’s movements.

The fact that the dorsal pathway is called both the how system and
the where system reflects that two perspectives can be used when ca-
tegorizing an action. The first focuses on the manner in which an action
is performed (how), for example, whether an object is pushed or pulled.
The second perspective focuses on the result of the action, for example,
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whether an object moves (where) or changes some property. In parallel
with this distinction, natural languages contain two types of verbs de-
scribing actions (Levin & Rappaport Hovav, 2005; Warglien,
Gärdenfors, &Westera, 2012). The first type is manner verbs that de-
scribe how an action is performed. In English, some examples are run,
swipe, wave, push, and punch. The second type is result verbs that
describe the result of actions. In English, some examples are move, heat,
clean, enter, and reach. Manner verbs express causes and result verbs
express effects of actions. In our previous experiments (Gharaee,
Gärdendors, & Johnsson, 2016, 2017b, 2017a) actions without objects
have been studied and the verbs describing the output have been
manner verbs. In the present study that include objects, the output
contains both manner and result verbs.

In human-robot applications it is important to collaborate about
objects, so it is necessary to develop a system that can categorize ac-
tions involving objects as well as pure manner actions. Within robotics,
action recognition systems have, until recently, been based on the result
perspective, focusing on how result verbs can be modeled, e.g.
(Cangelosi et al., 2008; Demiris & Khadhouri, 2006; Kalkan, Dag,
Yürüten, Borghi, & Sahin, 2014; Lallee, Madden, Hoen, & Ford
Dominey, 2010). From this perspective, it is sufficient to know the pre-
state and post-state of the environment before and after performing an
action in order to categorize an action. In the method proposed in Lallee
et al. (2010), the robot learns four actions including objects as “cover”,
“uncover”, “give” and “take” through linguistic interactions with
human agents and as a result generates spoken language that represents
its perceptions of the performed action. A human-robot communication
system that includes both manner and result verbs has been developed
in Mealier, Gärdenfors, and Pointeau (2016). In this study, the action
comprehension and object detection occurs through visual perception
(observations) and human-robot spoken interactions (expression of
causes and effects of the actions).

In the literature one finds several systems that can categorize dif-
ferent sets of human actions. In the past, research focused on categor-
izing actions based on image sequences from ordinary visible light
cameras (Niebles, Wang, & Li, 2008). Unfortunately such cameras have
severe limitations such as sensitivity to color and illumination varia-
tions, occlusions, and background clutters. As a consequence, Kinect
and other depth cameras are often used instead since they provide 3D
information about the scene, which offers more discerning information
of the human postures involved in the actions that are studied. The
depth camera can also operate in total darkness which is a benefit for
applications such as continuous patient/animal monitoring systems.
The skeletons estimated from depth images are quite accurate, but the
algorithm still has limitations. It gives inaccurate results when the
human body is partly occluded, and the estimation is not reliable when
the person touches the background or when the person is not in an
upright position (Xia & Aggarwal, 2013).

In Li, Zhang, and Liu (2010), a data set of 20 actions, each per-
formed by 10 actors in 2 or 3 different events, has been collected from
sequences of depth maps obtained by a depth camera. An action graph
is used to model the dynamics of the actions, and a collection of 3D
points is used to characterize a set of salient postures corresponding to
the nodes in the action graph. The same data set, often called the MSR
Action 3D data set, has been studied by many other researchers. Here
we briefly present some of the methods that have been used.

In Xia, Chen, and Aggarwal (2012), a method applied to the histo-
gram of 3D joint locations as a compact representation of postures is
introduced. It uses Linear Discrimant Analysis to project the histogram
of 3D joint locations extracted from the action depth sequences and
then clusters them into k posture visual words (the prototypical action
poses). Another method for activity recognition from videos gained by a
depth sensor is represented in Oreifej and Liu (2013). It builds a his-
togram to capture the distribution of the surface normal orientation in
the 4D space of time, depth, and spatial coordinates by creating 4D
projectors, which quantize the 4D space and represent the possible

directions for the 4D normal. The method presented in Yang and Tian
(2012), also uses body joints extracted from sequences of depth maps. It
applies features based on position differences of joints (eigen joints)
that combine action information including static posture, motion, and
offset and then uses the Naive Bayes Nearest Neighbour classifier to
classify actions. To recognize human actions from depth maps, Yang,
Zhang, and Tian (2012) use depth maps that are projected onto three
orthogonal planes and global activities through entire video sequences
that are accumulated to generate a Depth Motion Map. Then the his-
tograms of Oriented Gradients are extracted from the Depth Motion
Map as the representation of an action video.

A pose-based action recognition system is introduced in Wang,
Wang, and Yuille (2013) that extends the method in Yang and Ramanan
(2011) to estimate human poses from action videos. It infers the best
poses by best-K pose estimation for each frame by incorporating seg-
mentation and temporal constraints for all frames in the video. A visual
representation for 3D action recognition from sequences of depth maps,
called Space–Time Occupancy Patterns, is used in Vieira, Nascimento,
Oliveira, Liu, and Campos (2012). In the proposed feature descriptor
method, a 4D grid for each depth map sequence is produced by dividing
space and time axes into multiple segments to preserve spatial and
temporal information between space–time cells. In Wang, Liu,
Chorowski, Chen, and Wu (2012), semi-local features called Random
Occupancy Pattern features are extracted and a sparse coding approach
is used to encode these features. In Wang, Liu, Wu, and Yuan (2012), an
actionlet ensemble model which learns to represent each action and to
capture the intra-class variance is introduced. The model proposes
features of depth data that are capable of characterizing human motion
and human-object interactions. The use of local spatio-temporal interest
points (STIPs) and the resulting features from RGB videos is the base of
the activity recognition method presented in Xia and Aggarwal (2013).
In the method, first the STIPs are extracted from depth videos (called
DSTIP), and then 3D local cuboid in depth videos by Depth Cuboid
Similarity Feature (DCSF) are described. Using DSTIP and DCSF to re-
cognize activities from depth videos have no dependence on the skeletal
joints information. A non-parametric Moving Pose framework for low-
latency human activity recognition is proposed in Zanfir, Leordeanu,
and Sminchisescu (2013), which is a descriptor that considers the pose
information together with the speed and acceleration of the skeleton
joints. The descriptor works with a modified k-nearest neighbours
classifier, which employs both the temporal location of a particular
frame within the action sequence as well as the discrimination power of
its moving pose descriptor compared to other frames in the training set.

Common to all the systems presented here is that they use a pre-
recorded data set of actions, typically the MSR data (Li et al., 2010).
The movies for actions are edited so that they only cover one of the
actions that will be categorized and not the intermediate intervals. The
systems are then trained to classify the actions. The experiments are
mostly performed on one specific way of data assortment. This means
that the systems are in general not tested on movies outside the data set
and it is unknown to what extent they can generalize to new movies.
Moreover, these systems are tested in offline experiments while in
human-robot interaction scenarios, the system are supposed to identify
actions online in real time.

Among related studies that propose an online implementation of
action recognition, Ellis, Masood, Tappen, Laviola, and Sukthankar
(2013) proposes an online action classification method based on the
canonical body poses, and a feature descriptor based method for clas-
sifying actions from depth sequences introduced in Vieira et al. (2012).
In both studies, the actions used in online experiments do not involve
objects, only body movements which form the agent’s spatial trajec-
tories.

Variants of our system presented below have also been trained and
tested with the prerecorded MSR data set in the research studies pre-
sented in (Gharaee, Gärdendors, & Johnsson, 2017b, 2017a). In addi-
tion to that, our system is also used in online experiments with new
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