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Abstract

This paper presents an algorithm for action selection, in the context of intelligent agents,
capable of learning from rewards which are sparse in time. Inspiration for the proposed
algorithm was drawn from computational neuroscience models of how the human prefrontal
cortex (PFC) works. We have observed that this abstraction provides some advantages, such
as the representation of solutions as trees, making it human-readable, and turning the learning
process into a combinatorial optimization problem. Results for it solving the 1-2-AX working
memory task are presented and discussed. We also argue the pros and cons of the proposed
algorithm and, finally, address potential future work.
ª 2014 Elsevier B.V. All rights reserved.

Introduction

This paper presents an algorithm for action selection in the
context of intelligent agents capable of learning from sparse
in time rewards. Inspiration for the proposed algorithm was
drawn from computational neuroscience models of how the
human prefrontal cortex (PFC) works.

The mathematical and algorithmic study of how the
human conscious mind solves the problem of selecting the
next action to be taken has produced many interesting
results (Baars & Franklin, 2009; Reggia, 2013). By controlling

and managing other cognitive processes ‘‘executive func-
tions’’ are those responsible for what is usually considered
to be ‘‘intelligent behavior’’. They are a ‘‘macroconstruct’’
(Alvarez & Emory, 2006), in the sense that multiple sub-
processes must work in conjunction to solve complex
problems. The term ‘‘executive function’’ is therefore used
as an umbrella for a wide range of cognitive processes and
sub-processes (Chan, Shum, Toulopoulou, & Chen, 2008),
with the most prominent being action selection, planning,
selective attention and learning (Baars & Gage, 2010;
Frank & Badre, 2012; Fuster, 2008).

In their nature, executive functions are mostly future
directed and goal oriented, whilst exerting supervisory con-
trol over all voluntary activities. They deal with prospective
actions and deliberate plans to achieve goals which can be
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defined by the executive itself. In a sense, this is what the
frontal lobe, in particular the prefrontal cortex, does for
humans (Baars & Gage, 2010; Chersi, Ferrari, & Fogassi,
2011).

In this work we propose an action selection algorithm
inspired by the computational neuroscience model described
in the Leabra framework (Hazy, Frank, & O’Reilly, 2007;
O’Reilly, Munakata, Frank, Hazy, & Contributors, 2012).
With its PBWM (Prefrontal Cortex Basal Ganglia Working
Memory) algorithm, Leabra models how the human PFC
interacts with basal ganglia in order to learn from rewards
separated in time and select the most appropriate action
given a particular stimulus. In other words it performs, with
the exception of planning, all major executive functions.

The PBWM mechanism strives to follow the biological
cognitive process as closely as possible. The present work,
however, focuses more on the development of a new algo-
rithm, which is also biologically inspired but ultimately
designed to be used in the development of intelligent
agents. In order to do so, the inner workings of the PBWM
mechanism (Hazy et al., 2007) were abstracted in the form
of an action selection algorithm, whose behavior towards
new stimuli is defined by an optimized tree structure. We
have observed that this abstraction provided a number of
advantages, such as:

� Representing solutions as trees, instead of neural
networks, allows one to see the knowledge it encodes
in a direct manner.
� This method turned the learning process into a combina-
torial optimization problem. This potentially makes the
use of different optimization techniques straightforward.

Details on how we achieved this can be seen in Section
‘‘Methods’’. The remainder of this paper is organized as fol-
lows. Section ‘‘Motivation’’ presents our initial motivations
for developing this algorithm. Section ‘‘The PBWM mecha-
nism’’ provides a brief description of how the original PBWM
mechanism works, while describing the ‘‘1-2-AX’’ working
memory1 task used as a benchmark for validation. Section
‘‘GLAS – A gated-learning action selection mechanism’’
then describes our proposed gated-learning action selection
(GLAS) mechanism. In Section ‘‘Results’’ we apply GLAS to
learn the 1-2-AX working memory task and present training
results given a particular sequence of events. The paper
closes with Section ‘‘Conclusions’’, where we discuss
obtained results. We also argue the pros and cons of the pro-
posed algorithm and, finally, point to potential future work.

Motivation

The core motivation for developing this algorithm is to take
advantage of what neuroscience, and more specifically
computational neuroscience, has produced that could be
useful for the development of artificial intelligent agents.

Specifically, adapting the PBWM mechanism to provide
human-readable solutions was motivated by our previous
work with behavior networks2 and action selection
(Raizer, Paraense, & Gudwin, 2012; Raizer, Rohmer,
Paraense, & Gudwin, 2013).

As a matter of fact, not only should an agent be able to
select the most relevant action at a given time, but it should
do so while taking into consideration its future conse-
quences. Traditional reinforcement learning mechanisms,
such as variations of SARSA and Q-Learning (Russell &
Norvig, 2003), have often been used to solve challenging
problems in engineering and computer science (Bagnell &
Schneider, 2001; Mahadevan & Connell, 1992; Riedmiller,
Gabel, Hafner, & Lange, 2009; Stone, Sutton, &
Kuhlmann, 2005; ZicoKolter & Ng, 2011). They lack,
however, an ability the mammalian brain excels at: to
bridge the gap between actions and late rewards (Bakker,
Zhumatiy, Gruener, & Schmidhuber, 2003).

Let us take for instance the task of teaching a dog that
taking a bath is a rewarding experience.

In Figs. 1 and 2, ‘‘stimulus from senses’’ represents the
dog’s perception of having a bath. Fig. 1(a) represents the
use of a synchronous reward (reward is given while the
dog is still perceiving the stimulus) and Fig. 1(b) represents
the use of a late reward. We see therefore 4 bath episodes
being represented here, and learning is represented by the
dotted vertical line. If every time during bath its owner
gives the dog a cookie (reward), a burst of dopamine neural
firing happens in the dogs’ brain. Since the stimulus of tak-
ing a bath is still active, the brain manages to correlate this
reward with the beginning of the stimulus, linking the
perception of taking a bath to being something good.

However, if the owner waits to give its dog a cookie long
after each bath is finished, something like what is described
in Fig. 1(b) could happen. In this case, there is nothing link-
ing the moment of reward to the appearance of the stimulus.

Dogs, however, are mammals with highly developed pre-
frontal cortexes. The PFC works, among other things, as a
temporary container for storing stimuli representations.
Therefore, what really should happen in the previous case,
is something like what we see in Fig. 2.

In this case, the PFC stimulus representation was held
long enough for the brain to make the association. In other
words, the represented stimulus, stored in PFC, acted as if
it were the perceived stimulus coming from the dog’s senses.

Traditional artificial neural networks, such as MLPs
(multi layer perceptrons) and recurrent neural networks,
are known to be bad at establishing a link between longer
time lapses, since backpropagated errors tend to either
explode or exponentially decay during training
(Pérez-Ortiz, Gers, Eck, & Schmidhuber, 2003).

Computational models successful at solving this kind of
problem are usually those based on gating mechanisms. A

1 Working memory (WM) is a term, coined by behavioral neuro-
science, which describes the cognitive capacity for storing and
manipulating novel information for a short period of time (Baars &
Gage, 2010). It was initially proposed by Allan Baddeley (Baddeley &
Hitch, 1974), and it is believed that the PFC plays a critical role in
active maintenance of WM information (Fuster, 2008).

2 A behavior network is an action selection mechanism initially
developed by Maes (1989), which is capable of selecting the most
relevant action at the present time, while at the same time
deliberating the consequences of those actions. Deliberation is
made possible because each behavior has a list of preconditions,
which hold propositions necessary for the behavior to become
relevant, and lists of consequences. These lists contain human-
readable propositions about the world state. For more details we
refer to Maes’ original paper.
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