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b Institute for Cognitive Science, University of Osnabrück, Osnabrück, Germany
c Institute for Neuroinformatics, University of Zürich, Zürich, Switzerland
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Abstract

Neural circuits closer to the periphery tend to be organised in a topological way, i.e. stimuli
which are spatially close tend to be mapped onto neighbouring processing neurons. The goal
of this study is to show how motion features (optic-flow), which have an inherent spatio-tem-
poral profile, can be self-organised using correlations of precise spike intervals. The proposed
framework is applied to the spiking output of an asynchronous dynamic vision sensor (DVS),
which mimics the workings of the mammalian retina. Our results show that our framework is
able to form a topologic organisation of optic-flow features similar to that observed in the
human middle temporal lobe.
ª 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, neuroscience research has shown
the immense impact of plasticity on the mammalian brain

(Sur et al., 1988; Clark et al., 1988). This discovery has de-
creased the need to explain brain circuits in terms of hard-
wired connections defined solely by innate processes. In
spite of the progress made, there are still many open ques-
tions about how exactly the brain develops.

This study presents a self-organising approach to model
the development of (visual) motion features, for which
receptive fields can also be found in the mammalian cortex.

The proposed system is based on spatio-temporal corre-
lation between precise spike time intervals. The input to
the system is obtained from an asynchronous dynamic vision
sensor (DVS), in which each photoreceptor fires asynchro-
nously in response to changes in illumination contrast. When
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a change is detected above (or below) a given threshold va-
lue, the receptor triggers a spike in a way similar to the ac-
tion potentials generated in the mammalian retina.

The remainder of this paper is organised as follows. In
the Materials section, the DVS and the robot platform are
explained. The method section describes the self-organising
network, the data collection procedure and data analysis.
Experiments and results are presented in the following sec-
tion. In the end the conclusion and a future outlook of the
work are given.

2. Materials

The silicon retina is a vision sensor in which each pixel re-
cords local illumination changes independently and continu-
ously with microsecond precision (Lichtsteiner et al., 2008).
Since the sensor records discontinuities dynamically, it re-
duces the redundancy of conventional frame-based inten-
sity images. One output event si of the camera is defined
by its location ðx; yÞ, the timing t and the event-type, which
is either ON or OFF for an increase or decrease of illumina-
tion respectively and can be defined by the derivative of
the illumination l : s ¼ t; x; y; sgn @l

@t

� �� �
. Since all of the

128 · 128 pixels work independently of one another, the
system is not affected by over- or under-exposure.

As there is no output from the sensor when the image is
constant, changes in the illumination have to be present,
which can be caused either by moving external stimuli, or
by self-induced movements (or both). In this study, we
use self-induced movements (see Lungarella et al., 2003;
O’Regan and Noë, 2001). The camera is mounted on top of
two servo motors which allow it to pan and tilt. The target
position of each servo is given by ch for the pan (horizontal
direction) and cv for the tilt (vertical direction). The whole
setup is placed in front of three different stimuli printed on
an A4 sheet of paper: a bar, a checkered board and a filled
circle (see Fig. 1 right).

3. Methods

The algorithm used in this study is a variation of a Kohonen-
network, also called self-organising map (SOM) (Kohonen,
1982). It is an unsupervised learning method, which is based
on competitive and Hebbian learning (Hebb, 1949). Our

approach is based on temporal difference codings of the
spiking input events (see below).

Data collection. In our experiments we use only a small
subset of pixels located at the centre of the DVS. These pix-
els form a central patch containing a total of 4 · 4 pixels
(see Fig. 1 left). The input x to the SOM is calculated from
the temporal difference between the firing of each pixel
xi in the central patch and a given reference time t0. The
time t0 is given by the time at which the first pixel fires in
the central patch. In total the input to the SOM consists of
a vector of 16 elements (one for each pixel in the patch).
All the pixels must fire at least once in a time interval
½0;Tmax� (where Tmax = 50 ms), otherwise the input is ne-
glected (i.e. not fed into the SOM).

SOM architecture. The SOM architecture is shown in
Fig. 1. The SOM consists of a fully connected network, in
which all the weight vectors are initialised with small values
taken from a uniform distribution. The output of the SOM
consists of p · q nodes which form the feature map encoding
the motion features (i.e. optic-flow). For all the experi-
ments p = q = 8.

The SOM works as follows. At every input sample xj pre-
sented to the network a winning node is identified as the
node whose euclidean distance to the input vector is the
smallest. In a circular neighbourhood around the winning
node wk;l, the nodes wh;i are updated according to the learn-
ing rule (Kohonen and Honkela, 2007), which is a variation
of the original ruled proposed in (Kohonen, 1982)

wh;i ¼ wh;i þ ðaðjÞHk;lðh; i; jÞðwh;i � xjÞÞ ð1Þ

where aðjÞ is the time-varying learning rate and Hk;l is the
neighbourhood-function, which represents the competitive
part of the learning. The learning rule is proportional to
the difference from the input vector to the current node,
which is the Hebbian part of the learning.

The neighbourhood-function as well as the learning rate
are both functions of time. To save computational time, the
neighbourhood-function is first realised as a decreasing cut-
off radius rðjÞ, where the euclidean distance in the grid has
to be smaller than rðjÞ. The cut-off radius rðjÞ; a and H func-
tions used in this study are defined by:

rðjÞ ¼ ae–bj; aðjÞ ¼ e�cj; Hk;lðh; i; jÞ ¼ e2:jjðk;lÞ>�ðx;yÞ>jj2 :rðjÞ�2

ð2Þ
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Fig. 1 Left: Schematic diagram of the network architecture. Right: Experimental setup with the three different stimuli, i.e.
either a black bar, a chequerboard or a circle.
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