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Abstract

We present a cognitive architecture whose main constituents are allowed to grow through a sit-
uated experience in the world. Such an architectural growth is bootstrapped from a minimal
initial knowledge and the architecture itself is built around the biologically-inspired notion
of internal models. The key idea, supported by findings in cognitive neuroscience, is that the
same internal models used in overt goal-directed action execution can be covertly re-enacted
in simulation to provide a unifying explanation to a number of apparently unrelated individual
and social phenomena, such as state estimation, action and intention understanding, imitation
learning and mindreading. Thus, rather than reasoning over abstract symbols, we rely on the
biologically plausible processes firmly grounded in the actual sensorimotor experience of the
agent. The article describes how such internal models are learned in the first place, either
through individual experience or by observing and imitating other skilled agents, and how they
are used in action planning and execution. Furthermore, we explain how the architecture con-
tinuously adapts its internal agency and how increasingly complex cognitive phenomena, such
as continuous learning, prediction and anticipation, result from an interplay of simpler princi-
ples. We describe an early evaluation of our approach in a classical AI problem-solving domain:
the Sokoban puzzle.
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1. Introduction

In the early days of AI, optimism about replicating a broad
set of human-level cognitive skills in artificial agents was
relatively common. As the decades went by the goal of
building a general intelligence was substituted by a less
ambitious one of building agents whose ‘‘intelligence’’ is
measured against their capability to solve a well-defined
(and narrow) set of problems, usually in relatively struc-
tured environments. While many approaches have proven
to outperform humans in specific tasks, they still lack some
of the most remarkable features of the human intelligence
such as, for example, adaptiveness and robustness. Notable
exceptions are provided by efforts to create cognitive archi-
tectures that take a holistic approach to intelligence, by
integrating under the same theoretical umbrella various
processes whose interoperation is aimed at giving rise to
more complex forms of intelligence.

The architecture we are developing is of this kind: its
capabilities are intended to grow through the system’s situ-
ated experience in the world (Nivel et al., 2013). Such an
architectural growth is bootstrapped from a minimal initial
knowledge that the system uses as its first principles to build
upon. The overall architectural pattern is inspired by a bio-
logically-inspired notion of internal models which consti-
tute a computational implementation of the mirror
neuron system (Rizzolatti, Fadiga, Gallese, & Fogassi,
1996). Indeed, findings in cognitive neuroscience have
pushed forward the idea that the same internal models used
in overt goal-directed action execution can be covertly re-
enacted through a process of motor simulation to provide
a unifying explanation to a number of apparently unrelated
individual and social phenomena, such as motor control and
state estimation, action and intention understanding, imita-
tion learning, joint action and theory-of-mind (Wolpert,
Doya, & Kawato, 2003; Pezzulo, Candidi, Dindo, & Barca,
2013) just to name a few; see also (Thórisson, 2012) for
key underlying assumptions of this work.

Although limited in scope with respect to state of the art
cognitive architectures as ACT-R (Anderson & Lebiere, 1998)
or SOAR (Laird, 2012), our architecture is meant to merge
ideas from the above cited approaches and less classical
architectures based on situated sensorimotor loops such as
MOSAIC (Wolpert & Kawato, 1998) or HAMMER (Demiris &
Khadhouri, 2006). Indeed, executable knowledge is encoded
into internal models and associated forward and inverse
operators are used to implement higher cognitive functions
such as learning and reasoning. In addition, we explicitly
target the ability to simulate alternative curses of actions
(Grush, 2004; Hesslow, 2002) and to anticipate actions that
might prove to be useful in the future (Pezzulo, 2008). Un-
like other cognitive architectures, our approach tightly inte-
grates these capabilities into the overall decision making
process. For example, the cognitive architecture Poly-
scheme uses simulation to integrate different representa-
tions and algorithms, but not as a support for action
selection (Cassimatis, Trafton, Bugajska, & Schultz, 2004).
Other studies use simulated sensory input to blindly control
robot navigation but do not use simulation mechanisms to
process abstract goals (Gigliotta, Pezzulo, & Nolfi, 2011;
Ziemke, Jirenhed, & Hesslow, 2005).

This article is organized along two deeply intertwined
dimensions: (1) how internal models are learned in the first
place (we refer to this process as knowledge acquisition or
learning interchangeably throughout the paper) and (2)
how are they used in action planning, simulation and execu-
tion. Furthermore, we explain how a system based on these
principles is able to continuously adapt its internal agency,
and how continual learning and anticipation result from an
interplay of simpler processes. These features have been
recognized as one of the major ingredients of advanced
intelligences and inserted in the roadmap for building bio-
logically-inspired architectures (Chella, Lebiere, Noelle, &
Samsonovich, 2011). In the next section we provide an over-
view of our architecture, its processes and their interaction.
Then we discuss mechanisms of learning and action selec-
tion within our framework. Finally, we provide an early
evaluation of our approach in a classical AI problem-solving
domain: the Sokoban puzzle.

2. Overview of the architecture

The architecture we propose in this paper is characterized
by two main features: it continuously expands its skills
either through direct experience or by observing and imitat-
ing others (learning), and it provides tools for planning, exe-
cuting and monitoring its own goal-directed actions
(reaction). Before going into computational details of how
learning and reaction processes are efficiently imple-
mented, we first describe the fundamental building blocks
of our architecture.

The system continuously gathers data from the environ-
ment and from its own inner activity. Every single sample
of such an activity is represented as a key-value message,
where the semantics of a key is to be interpreted by models.
A message could represent, for instance, the sensed angle
of a joint or a motor command. All such messages are
shared by all the processes in a way similar to a blackboard
architecture (Hayes-Roth, 1985). The set of messages avail-
able at a certain time t constitutes the state St of the
system.

On the other hand, operational knowledge is encoded via
internal models. We distinguish between two types of mod-
els: forward (known as predictors) and inverse (known as
controllers) (Wolpert & Kawato, 1998). Each model pos-
sesses a list of patterns on messages, meaning that we re-
strict the applicability of a particular model only to states
that match the pattern of that model. A model also
possesses a production that can be executed when its pat-
terns are satisfied. A production is a block of code that
the system executes. It can encode predictions of future
states, in case of forward models, or controls, in case of
the inverse ones. Thus, a forward model is defined as
Mf = {Precondition,Command,Production} and an inverse
model as Mi = {Precondition,Goal,Production}. The execu-
tion of a model may suppress or enable or trigger the execu-
tion of other models; in this sense we say that the
architecture is model-driven.

Our architecture is composed of concurrent processes
that cooperate to achieve system goals. The execution of
these processes is data-driven (the availability of new data
triggers their execution). Fig. 1 shows the components of
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