CAAI Transactions on Intelligence Technology xxx (2017) 1-8

Contents lists available at ScienceDirect

CAAI Transactions on Intelligence Technology

journal homepage: http://www.journals.elsevier.com/caai-transactions-on-intelligence-
technology/

Original article

Metaheuristic post-optimization of the NIST repository of covering

arrays

Jose Torres-Jimenez', Arturo Rodriguez-Cristerna

CINVESTAV-Tamaulipas, Information Technology Laboratory, Km. 5.5 Carretera Cd., Victoria, Tamaulipas, Mexico

ARTICLE INFO ABSTRACT

Article history:

Received 19 September 2016
Accepted 25 December 2016
Available online xxx

Keywords:

Covering arrays

NIST repository of covering arrays
Metaheuristic post-processing algorithms

Construction of Covering Arrays (CA) with minimum possible number of rows is challenging. Often the
available CA have redundant combinatorial interaction that could be removed to reduce the number of
rows. This paper addresses the problem of removing redundancy of CA using a metaheuristic post-
optimization (MPO) approach. Our approach consists of three main components: a redundancy detec-
tor (RD); a row reducer (RR); and a missing-combinations reducer (MCR). The MCR is a metaheuristic
component implemented using a simulated annealing algorithm. MPO was instantiated with 21,964 CA
taken from the National Institute of Standards and Technology (NIST) repository. It is a remarkable result
that this instantiation of MPO has delivered 349 new upper bounds for these CA.

© 2017 Chonggqing University of Technology. Production and hosting by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The use of software has permeated many areas of human ac-
tivity, so the reliability of software has become important world-
wide. It is estimated that software testing consumes about 50% of
the cost of developing a new piece of software. A 2002 NIST report
[23] indicates that the cost of an inadequate infrastructure for
software testing was in the range of $22.2 to $59.5 billion (US
dollars). Reducing this cost is not only important but the design and
implementation of adequate software testing procedures is critical
for the reliability of many electronic and mechanical systems, even
more so in complex and important systems, such as space shuttles
Lions and et al. [16].

According to Myers et al. [17] functional software testing
methods may be divided into two main categories: white-box
testing and black-box testing. The design of white-box testing
suites requires source code of the software under examination.
Some testing strategies based on the white-box approach are:
statement coverage, decision coverage, condition coverage,
decision-condition coverage and multiple-condition coverage. The
building of test suites using white-box strategies is more

* Corresponding author.
E-mail addresses: jtj@cinvestav.mx (J. Torres-Jimenez), arodriguez@tamps.
cinvestav.mx (A. Rodriguez-Cristerna).
Peer review under responsibility of Chongqing University of Technology.

http://dx.doi.org/10.1016/j.trit.2016.12.006

challenging than for black-box strategies, since white-box strate-
gies are based on knowledge of the internal structure of the system.
Furthermore, if the system is modified, then tests must be rede-
signed to satisfy the new version of the system. On the other hand,
the design of black box testing suites does not require source code
of the software under examination. It compares actual behaviour
against expected behaviour based on the functionality and the
specification of the software system under examination. Some
black-box testing strategies are: exhaustive input testing, equiva-
lence partitioning, boundary-value analysis, cause-effect graphing,
error guessing, and combinatorial interaction testing.

It is easy to construct test suites using a random black-box
approach, but they rarely cover a large percentage of the func-
tionality of the system under examination. A black-box approach
that covers 100 percent of the functionality is the exhaustive
approach, but it is impractical in most cases because too many tests
are required. As an example: if we need to design a test suite for a
system that has 20 parameters and each parameter has 10 possible
values, it would require 1020 tests; however, using a combinatorial
interaction testing approach that covers the combinations of all
pairs of parameter values, the test suite will require only 155 tests.
The number of tests required with combinatorial interaction testing
grows logarithmically according to the number of parameters [11].
Empirical studies in software testing have shown that combinato-
rial interaction testing is a useful approach Kuhn et al. [14], Bell [4].
The mathematical objects that support combinatorial interaction

2468-2322/© 2017 Chongging University of Technology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as:]. Torres-Jimenez, A. Rodriguez-Cristerna, Metaheuristic post-optimization of the NIST repository of covering
arrays, CAAI Transactions on Intelligence Technology (2017), http://dx.doi.org/10.1016/j.trit.2016.12.006

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jtj@cinvestav.mx
mailto:arodriguez@tamps.cinvestav.mx
mailto:arodriguez@tamps.cinvestav.mx
www.sciencedirect.com/science/journal/24682322
http://www.journals.elsevier.com/caai-transactions-on-intelligence-technology/
http://www.journals.elsevier.com/caai-transactions-on-intelligence-technology/
http://dx.doi.org/10.1016/j.trit.2016.12.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.trit.2016.12.006
http://dx.doi.org/10.1016/j.trit.2016.12.006

2 J. Torres-Jimenez, A. Rodriguez-Cristerna / CAAI Transactions on Intelligence Technology xxx (2017) 1-8

testing are Covering Arrays (CA) and Mixed Covering Arrays (MCA).

CA and MCA are combinatorial structures that have been used
successfully in various areas. The most reported application of CA
and MCA is in the design of test suites for software combinatorial
interaction testing [7,8] which is based on the concept that software
faults are caused by unexpected combinatorial interactions of
certain size between components. Another application is found in
the field of parameter fine-tuning of metaheuristic algorithms
[12,19,21,22].

A CA, denoted by CA(N; t, k, v), is an N x k array, where every
entry of the array takes values from a set of symbols of size v, such
that every N x t sub-array contains at least once all possible ! t-
tuples of symbols. An MCA is a generalization of a CA where the
alphabets of the columns could have different cardinalities. The test
cases are represented by the rows, the parameters are represented
by the columns, the parameter values are taken from the set
{0,1..., v—1} which is called the alphabet, and t is the strength or
combinatorial interaction degree between parameters covered by
the CA. Fig. 1 shows an example of a CA(9; 2,4,3), and an MCA(6;
2,4,3123) is shown in Fig. 2.

The Covering Array Number (CAN) is the minimum N such that
for fixed k, v, and t a CA exists. The CAN is denoted by CAN(t,k,v).
The construction of CA with N=CAN(t,k,v) is a challenging problem
whether we use mathematical structures or metaheuristic
algorithms.

When we have non-optimal CA (i.e.a CAwith N > CAN(t,k,v)), it
usually has many t-tuples that are covered more than once. This
fact presents the opportunity to reduce number of rows of CA, given
that it may then be possible to identify redundant rows [18] that
can be removed.

In this paper we introduce a Metaheuristic Post-Optimization
(MPO) approach to reduce the size of a CA by exploiting redun-
dant elements in CA. MPO is composed of three main components:
a) a redundancy detector (RD); a row reducer (RR); and a missing-
combination reducer (MCR) implemented using a simulated
annealing algorithm (the metaheuristic component of our
approach). MPO was extensively tested using 21,964 CA (taken
from the CA NIST repository). We have improved almost all 21,964
CA, but the most remarkable result is that MPO has set 349 new
upper bounds for these CA.

The remaining of the paper is structured in three sections. In
section 2 we present in detail MPO approach giving details of the
redundancy detector, row reducer and missing-combination
reducer components. In section 3 we present the results of
instantiating the MPO with the whole National Institute of Stan-
dards and Technology repository of covering arrays. Finally in

o O OO
O = ==
O NN N
[e T)
— =N O
e =N
N O N
N = O N
NN = O

Fig. 1. Transposed matrix of a CA(9;2,4,3).

01 1 0 0 1
0 1 1 1 0
01 0 1 0 1
0 0 1 1 2 2

Fig. 2. Transposed matrix of an MCA(6;2,4,3"23).

section 4 we present some conclusions.
2. Metaheuristic post-optimization (MPO)

In this section we present implementation details of the MPO
approach. We firstly give an overview of the whole process of MPO,
secondly, we present details of each of the components RD, RR,
MCR.

2.1. Design of MPO approach

The design and implementation of MPO approach is briefly
described in algorithm 1, where it can be observed that it has three
components and two main loops. The inner loop executes the
components: Redundancy Detector (RD) and Row Reducer (RR). After
the inner loop is executed, the Missing-Combinations Reducer (MCR)
runs. When the MCR (implemented with a simulated annealing
(SA) algorithm) is not able to make the number of missing combi-
nations equal to zero, MPO ends.

MPO (algorithm 1) receives as input .«# = CA(N; t,k,v) and gives
as output .z = CA(N’; t, k, v) with N’ < N and no missing t-wise
combinations. The function 7 computes the number of missing t-
wise combinations of the parameter passed to it. 7 has temporal
complexity O(N (?)) (a more detailed description of how to
compute the missing interactions for CA was presented by Avila-
George et al. [2].

2.2. Redundancy detector (RD)

The goal of the Redundancy Detector (RD) algorithm is to find a

Algorithm 1 Metaheuristic Post-Optimization (MPO) algorithm.

input : A= CA(N;t, k,v)
output: B = CA(N';t, k,v)|N' <N

1 begin

2 B+ A
repeat

3 repeat

»

B’ < Row Reducer(B');
until 7(B") > 0;
B’ < Simulated Annealing (B');
until 7(B") > 0;
return B

© ® N o w

end

B’ < Redundancy Detector (B'); if (B’ = 0) then B « B’
if (B’ =0) then B «+ B’

if (B’ = 0) then B+ B’

Please cite this article in press as: J. Torres-Jimenez, A. Rodriguez-Cristerna, Metaheuristic post-optimization of the NIST repository of covering
arrays, CAAI Transactions on Intelligence Technology (2017), http://dx.doi.org/10.1016/j.trit.2016.12.006

Download English Version:

https://daneshyari.com/en/article/6853584

Download Persian Version:

https://daneshyari.com/article/6853584

Daneshyari.com

https://daneshyari.com/en/article/6853584
https://daneshyari.com/article/6853584
https://daneshyari.com/

