
Original Article

Tenant-centric Sub-Tenancy Architecture in Software-as-a-Service

Wei-Tek Tsai*, Peide Zhong, Yinong Chen

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85287, USA

Available online 13 October 2016

Abstract

Multi-tenancy architecture (MTA) is often used in Software-as-a-Service (SaaS) and the central idea is that multiple tenant applications can
be developed using components stored in the SaaS infrastructure. Recently, MTA has been extended to allow a tenant application to have its own
sub-tenants, where the tenant application acts like a SaaS infrastructure. In other words, MTA is extended to STA (Sub-Tenancy Architecture). In
STA, each tenant application needs not only to develop its own functionalities, but also to prepare an infrastructure to allow its sub-tenants to
develop customized applications. This paper applies Crowdsourcing as the core to STA component in the development life cycle. In addition, to
discovering adequate fit tenant developers or components to help build and compose new components, dynamic and static ranking models are
proposed. Furthermore, rank computation architecture is presented to deal with the case when the number of tenants and components becomes
huge. Finally, experiments are performed to demonstrate that the ranking models and the rank computation architecture work as design.
Copyright © 2016, Chongqing University of Technology. Production and hosting by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: SaaS; MTA; STA; Tenant; Sub-tenant; Crowdsourcing; Ranking

1. Introduction

Cloud platforms often have three main components:
Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),
and Infrastructure-as-a-Service (IaaS). SaaS is the software
deployed over the internet [1], where users subscribe services
from SaaS providers and pay by a way of “pay-as-you-go”. In
SaaS, software is maintained and updated on a cloud, and
presented to the end users as services on demand. Multi-
Tenancy Architecture (MTA) of SaaS allows tenant de-
velopers to develop applications using the same code that is
based stored in the SaaS infrastructure. MTA is often inte-
grated with databases and supports tenant application cus-
tomization by composition of existing or new software
components stored in the SaaS or supplied by tenant
developers.

However, current MTA has the following limitations:

1) While a SaaS infrastructure support tenant applications
using services and data stored in the infrastructure, a
tenant application does not allow its users to use its own
services or data to develop new applications.

2) It is difficult for a tenant application to share service or
data with other tenant applications. Often, a SaaS platform
provides security mechanisms to isolate tenant applica-
tions so that tenants cannot access data that belong to other
tenants. Even though tenant code and data are stored in the
same database, the SaaS security mechanism isolates a
tenant from other tenants.

3) Most SaaS systems do not support tenants to customize
their applications already customized by other tenants.

To address those issues, Tsai in [2] introduced a STA (Sub-
Tenancy Architecture) to allow tenants to offer services for
sub-tenant developers for customizing their applications. As
SaaS component building often needs different technologies
such as frontend UI and database, the tenant or sub-tenant
developers are often not good at those technologies. There-
fore, it can be difficult for them to build SaaS components
from the scratch. Hence, this paper introduces Crowdsourcing

* Corresponding author.

E-mail addresses: wtsai@asu.edu (W.T. Tsai), Peide.Zhong@asu.edu

(P. Zhong), Yinong.Chen@asu.edu (Y. Chen).

Peer review under responsibility of Chongqing University of Technology.

Available online at www.sciencedirect.com

ScienceDirect

CAAI Transactions on Intelligence Technology 1 (2016) 150e161
http://www.journals.elsevier.com/caai-transactions-on-intelligence-technology/

http://dx.doi.org/10.1016/j.trit.2016.08.002

2468-2322/Copyright © 2016, Chongqing University of Technology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Yinong.Chen@asu.edu
www.sciencedirect.com/science/journal/24682322
http://dx.doi.org/10.1016/j.trit.2016.08.002
http://dx.doi.org/10.1016/j.trit.2016.08.002
http://www.journals.elsevier.com/caai-transactions-on-intelligence-technology/
http://dx.doi.org/10.1016/j.trit.2016.08.002
http://creativecommons.org/licenses/by-nc-nd/4.0/


to make use of the public wisdom and assign tasks to specific
experts who are good at those required technologies. To help
find adequate tenants, we developed models in this paper. The
rest of the paper is organized as follows. Section 2 reviews
related SaaS models and technologies; Section 3 analyzes life
cycles of tenant-centric application development; Section 4
introduces component and tenant rank; Section 5 presents
feature implementation selection model; Section 6 describes
rapid application building process. Section 7 presents the
experiment that illustrates the rank models, and Section 8
concludes the paper.

2. Related work

2.1. MTA in SaaS

In the current practice, MTA are implemented via the
following ways:

1) Integration with Databases: Weissman and Bobrowski
proposed a database-based and metadata-driven architec-
ture to implement MTA in Ref. [3]. In Ref. [3], where
heavy indexing was used to improve the performance, and
a runtime application generator is used to dynamically
build applications in response to specific user requests. As
all tenants shared the same database, a flexible schema
design was used. Aulbach [4] developed five techniques
for implementing flexible schemas for SaaS.

2) Middleware Approach: In this approach, an application
request is sent to a middleware that passes the request to
databases behind the middleware. As all databases are
behind the middleware and all application requests to
databases are managed and directed by the middleware,
the applications can be transformed into a MTA SaaS
rapidly with minimum changes to the original applica-
tions. Cai [5] described a transparent approach of making
existing Web applications to support MTA and run in a
public cloud.

3) Service-oriented SaaS: This is an approach to implement
MTA by SOA (Service-Oriented Architecture) [6]. SaaS
domain knowledge is separated from SaaS infrastructure
to facilitate different domains. EasySaaS [7] proposed a
development framework to simplify SaaS development by
harnessing both SOA and SaaS domain ontology. Azeez
[8] proposed an architecture for achieving service-oriented
MTA that enabled users to run their services and other
SOA artifacts in a MTA service-oriented framework as
well as provided an environment to build MTA applica-
tions. As this MTA is based on SOA, it can harness both
middleware and SOA technology.

4) PaaS-based approach: The SaaS developers use an existing
PaaS such as GAE [9], Amazon EC2 [10], or Microsoft
Azure [11] to develop SaaS applications. In this approach,
developers use the MTA features provided by a PaaS to
develop SaaS applications, and most of SaaS features such
as code generation, and database access are implemented

by the PaaS. Tsai [12] proposed a model-driven approach
on a PaaS to develop SaaS.

5) Object-oriented approach: Workday [13] proposed an
object-oriented approach for tenant application develop-
ment and configuration. In addition [13], also conducted a
study on MTA models, specifically it addressed the ar-
chitecture of MTA and its impact on customization, scal-
ability, and security.

2.2. Crowdsourcing

The purpose of Crowdsourcing is to make use of public
wisdom and let the crowd with domain knowledge to complete
specific tasks. Howe first defined the term “crowdsourcing” in
a companion blog post [14]. Merriam-Webster [15] defines
Crowdsourcing as the practice of obtaining needed services,
ideas, or content by soliciting contributions from a large group
of people, and especially from an online community, rather
than from the traditional employees or suppliers. Kittur in [16]
investigated the utility of a micro-task market for collecting
user measurements, and discussed design considerations for
developing remote micro user evaluation tasks. Peng in [17]
provided an overview of current technologies for
crowdsourcing.

2.3. Variation point

Variation points are locations where variation occurs, and
variants are the alternatives that can be selected. Software
product families introduce variability management to deal
with these differences by handling variability. Kang [18]
described a method for discovering commonality among
different software systems. Coplien [19] presented how to
perform domain engineering by identifying the commonalities
and variabilities within a family of products. Webber [20]
described a systematic method for providing components
that could be extended through variation points, which allowed
the user or application engineer to extend components at pre-
specified variation points to create more flexible set of com-
ponents. Mietzner [21] presented a variability descriptor and
described that its transformation into a WS-BPEL process
model to guide customizations. In addition, Mietzner [22]
explained how variability modeling techniques could support
SaaS providers in managing the variability of SaaS applica-
tions and proposed using explicit variability models to derive
customization for individual SaaS tenants.

2.4. Customization in SaaS

Customization is an important SaaS feature as tenants may
have different business logic and interface yet they share the
same code base. Chong [23] proposed a SaaS maturity model
that classifies SaaS into four levels including ad-hoc/custom,
customizable or configurable, multi-tenant efficient, and
scalable. Tsai introduced ontology into SaaS to help customize
applications [24]. A SaaS tenant application has components

151W.T. Tsai et al. / CAAI Transactions on Intelligence Technology 1 (2016) 150e161



Download English Version:

https://daneshyari.com/en/article/6853628

Download Persian Version:

https://daneshyari.com/article/6853628

Daneshyari.com

https://daneshyari.com/en/article/6853628
https://daneshyari.com/article/6853628
https://daneshyari.com

