
Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier.com/locate/datak

Automatic query reformulations for feature location in a model-
based family of software products

Francisca Péreza,∗, Jaime Fonta,b, Lorena Arcegaa,b, Carlos Cetinaa

a SVIT Research Group, Universidad San Jorge, Autovía A-23 Zaragoza-Huesca Km. 299, 50830, Villanueva de Gállego, Zaragoza, Spain
bDepartment of Informatics, University of Oslo, Postboks 1080 Blindern, 0316 Oslo, Norway

A R T I C L E I N F O

Keywords:
Conceptual modeling
Information retrieval
Feature location
Query reformulation
Software maintenance and evolution
Families of software products

A B S T R A C T

No maintenance activity can be completed without Feature Location (FL), which is finding the set
of software artifacts that realize a particular functionally. Despite the importance of FL, the vast
majority of work has been focused on retrieving code, whereas other software artifacts such as
the models have been neglected. Furthermore, locating a piece of information from a query in a
large repository is a challenging task as it requires knowledge of the vocabulary used in the
software artifacts. This can be alleviated by automatically reformulating the query (adding or
removing terms). In this paper, we test four existing query reformulation techniques, which
perform the best for FL in code but have never been used for FL in models. Specifically, we test
these techniques in two industrial domains: a model-based family of firmwares for induction
hobs, and a model-based family of PLC software to control trains. We compare the results pro-
vided by our FL approach using the query and the reformulated queries by means of statistical
analysis. Our results show that reformulated queries do not improve the performance in models,
which could lead towards a new direction in the creation or reconsideration of these techniques
to be applied in models.

1. Introduction

Feature location (FL) is known as the process of finding the set of software artifacts that realize a particular functionality of
software system. No maintenance activity can be completed without locating in the first place the software artifact (e.g., code) that is
relevant to the specific functionality [1]. Since FL is one of the main activities performed during software evolution [1] and up to an
80% of a system's lifetime is spent on the maintenance and evolution of system [2], there is a great demand for FL approaches that can
help developers to find relevant software artifacts in a family of software products.

Many of FL approaches use of Information Retrieval (IR) techniques [1,3] such as Latent Semantic Indexing (LSI) [4], Latent
Dirichlet Allocation (LDA) [5], and Vector Space Model [6] and involve the formulation of a query in natural language (e.g., by the
developer). These techniques are statistical methods used to find a feature's relevant software artifact by analyzing and retrieving
words that are similar to a query provided by a user. For example, during FL, a developer formulates a query which describes the
feature to be located in the code. The query is then run by the IR technique and a list of ranked software artifacts (e.g., classes or
methods) is retrieved.

The performance of the retrieval depends greatly on the textual query and its relationship to the text contained in the software
artifacts [7]. Hence, this relationship requires knowledge of the vocabulary of the software artifacts to be searched. This knowledge

https://doi.org/10.1016/j.datak.2018.06.001
Received 2 April 2017; Received in revised form 6 April 2018; Accepted 6 June 2018

∗ Corresponding author.
E-mail addresses: mfperez@usj.es (F. Pérez), jfont@usj.es (J. Font), larcega@usj.es (L. Arcega), ccetina@usj.es (C. Cetina).

Data & Knowledge Engineering xxx (xxxx) xxx–xxx

0169-023X/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Pérez, F., Data & Knowledge Engineering (2018), https://doi.org/10.1016/j.datak.2018.06.001

http://www.sciencedirect.com/science/journal/0169023X
https://www.elsevier.com/locate/datak
https://doi.org/10.1016/j.datak.2018.06.001
https://doi.org/10.1016/j.datak.2018.06.001
mailto:mfperez@usj.es
mailto:jfont@usj.es
mailto:larcega@usj.es
mailto:ccetina@usj.es
https://doi.org/10.1016/j.datak.2018.06.001


can be difficult to acquire in industrial environments that accumulate a vast amount of software over the years, which often emerges
ad hoc using software reuse techniques such as duplication (the “clone-and-own” approach) instead of formalizing the variability
among the family of software products. Moreover, in these industrial environments, software maintenance tasks are performed by
people who have not participated during the development, so the vocabulary that the people use on the textual query to locate
features during maintenance tasks can differ from the vocabulary that was used during the development. Therefore, these differences
between the query and the text contained in the software artifacts make the performance of the retrieval worse.

To overcome these differences between the query and the text contained in the software artifacts, other FL approaches [7–9]
refine the query using automatic reformulation techniques: expansion or reduction. A short query which obtains not relevant results
will likely need an expansion strategy (i.e., adding terms) to improve its performance, whereas a verbose query may need a reduction
strategy (i.e., removing terms) since the performance uses to be deteriorated handling long queries [10].

To date the vast majority of work in FL has been focused on improving the performance of the retrieval using automatic query
reformulation strategies in code (i.e., by better performance we mean retrieving the relevant software artifacts closer to the top of the
list of results). Nevertheless, other software artifacts such as the models have been neglected even though models are the cornerstone
in Model-Driven Development approaches to generate code.

To cope with this lack, we evaluate whether automatic query reformulation strategies could improve the results of FL in models.
Therefore, the contribution of this paper is twofold.

1. We test four automatic query reformulation techniques (Query reduction, Rocchio query expansion, RSV query expansion and
Dice query expansion), which perform best in that field [7] and have never been used to locate features in models. Specifically, we
test these techniques in two industrial domains: the model-based product family of the BSH group (www.bsh-group.com) and the
model-based product family of CAF (www.caf.net/en).
The BSH group is one of the largest manufacturers of home appliances in Europe. Its induction division has been producing
Induction Hobs (sold under the brands of Bosch and Siemens) for the last 15 years. CAF produces a family of PLC software to
control the trains that they have been developing over more than 25 years.

2. We compare the results provided by our FL approach using the query as it is (baseline) with the results provided by the four
reformulation techniques.
The results of this paper suggest that current automatic query reformulation techniques should be reconsidered to be applied in
models since we found that using the query as it is leads better results in models than including the query expansion/reduction
reformulations. We hope that these results help FL users when they work with models to loss the inertia of applying query
reformulation techniques as they would do to locate features in code. Moreover, these results would contribute towards a new
direction in the creation of new query reformulation techniques or the modification of the existing ones to improve the location
of features in models.

The rest of the paper is structured as follows: Section 2 provides the required background on the automatic query reformulation
techniques being compared. Section 3 presents the approach to perform feature location in models. Next, Section 4 presents the
evaluation performed, and Section 5 shows the results. Section 6 discusses the results. Section 7 describes the threats to validity.
Section 8 reviews the related work. Finally, Section 9 concludes the paper.

2. Query reformulation techniques

Researchers in the field of FL have proposed a large variety of approaches for automatic query reformulations for an initial query.
These approaches belong to one of the following two categories [11]: query expansion approaches and query reduction approaches.

Next, we introduce briefly these categories with emphasis on the automatic reformulation strategies that we use for FL in models.

2.1. Query reduction

Longer queries are typically used to express more sophisticated information needs. Nevertheless, longer queries use to include
both important information and noise, i.e., terms that serve more to confuse the search engine that support it in its task. Since the
performance of most commercial and academic search engines deteriorates while handling longer queries [10], the aim of query
reduction is to reduce long queries to shorter.

A conservative automatic query reduction approach that has been previously used in software engineering [7,12] consists of
eliminating non-discriminating terms, which are those terms that appear in more than 25% of the documents in the corpus.

2.2. Query expansion

Queries require including terms that fit with the vocabulary of the software artifacts to be searched. Nevertheless, the most critical
language issue for performance is that the users often do not use the same words [13].

To deal with this issue, several query expansion techniques have been proposed [13]. Since not all of these techniques can be
applied in our work (i.e., model based corpus), we selected three existing techniques using the following criteria: 1) we did not
consider techniques that relied on sources of information external to the corpus, like the web, or ontologies; 2) we did not selected
techniques that are designed to work for natural language documents as they rely on word relationships that exist in natural language

F. Pérez et al. Data & Knowledge Engineering xxx (xxxx) xxx–xxx

2

http://www.bsh-group.com
http://www.caf.net/en


Download English Version:

https://daneshyari.com/en/article/6853905

Download Persian Version:

https://daneshyari.com/article/6853905

Daneshyari.com

https://daneshyari.com/en/article/6853905
https://daneshyari.com/article/6853905
https://daneshyari.com

