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A B S T R A C T

In this paper a new meta-heuristic algorithm is introduced. This optimization algorithm is inspired by the very
popular tool among the technical traders in the stock market called the Fibonacci Indicator. The Fibonacci
Indicator uses to predict possible local maximum and minimum prices, and periods in which the price of a stock
will experience a significant amount of movement. The proposed Fibonacci Indicator algorithm is validated on
several Benchmark functions up to 100 dimensions to have a comparison to algorithms such as DE extensions,
PSO extensions, ABC, ABC-PS, CS, MCS and GSA in the ability of convergence and finding the global optimum
in different research areas. Finally two engineering design problems are used to show the performance of the
algorithm. Application of the proposed Fibonacci Indicator Algorithm in a wide set of benchmark functions has
asserted its capability to deal with difficult optimization problems.

1. Introduction

In the last few decades, the use of meta-heuristic algorithms has
been much improved to approach the optimized solution of nonlinear
functions. A heuristic algorithm is a method to find the solution to an
optimization problem by ‘‘trial-and-error’’. How ever, these algorithms
may not find the global best solution to the problem and might get
trapped in the local optimum points. On the other hand, the meta-
heuristic algorithms finds the optimum solution by higher-level strate-
gies employing trial-and-error, exploration, and exploitations. Particle
Swarm Optimization (PSO) (Eberhart and Kennedy, 1995), Evolutionary
Algorithms (EA) including Genetic Algorithm (GA) (Holland, 1975),
Ant Colony Optimization (ACO) (Bilchev and Parmee, 1995; Dorigo
and Blum, 2005), and the Bee Algorithm (BA) (Pham et al., 2006)
are among the most popular metaheuristic algorithms. Evolutionary
algorithms and swarm intelligence-based algorithms are two main cat-
egories of population-based optimization (Karaboga and Akay, 2009).
Genetic algorithms, Differential Evolution (DE) (Storm and Price, 1995),
(Meng and Pan, 2016; Meng et al., 2018) and evolutionary strategy
(ES) (Rechenberg, 1965; Schwefel, 1965) have been the most popular
techniques in evolutionary computation. Particle swarm optimization
and Bees Algorithm are the most popular examples of swarm intelligence
optimization. Two advantages of the different categories, i.e. evolution-
ary algorithms and swarm intelligence-based algorithms are presented
below:
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1. Particularly useful in multi-modal and multi-objective optimiza-
tion problems;

2. Hybridize algorithms to each other;

A number of optimization algorithms can combine with each other
and produce the hybrid algorithm with the synergy of both algorithm’s
advantages and elimination of their disadvantages.

Global optimization can be applied to various branches of science,
economics and engineering (Bomze et al., 1997; Gergel, 1997; Horst and
Tuy, 1996; Li et al., 2015; Rizk-Allah et al., 2016, 2018). Generally, solv-
ing nonlinear optimization problems can be classified into deterministic
and stochastic methods (Li et al., 2015; Arora et al., 1995; Pardalos et al.,
2000; Younis and Dong, 2010). In deterministic methods, optimization
problems are solved by creating deterministic progression of conver-
gence at the global optimal solution. This method requires unfailing
mathematical specification and responsively depends on the initial
conditions. On the contrary, in the stochastic methods including heuris-
tic and meta-heuristic methods, new points are randomly generated
(Younis and Dong, 2010). The efficiency of the optimization algorithms
is usually determined by their ability in finding the global best solution
by the minimum cost usually corresponding to the number of function
evaluations. Exploration and exploitation are two main strategies to
find the global best solution. Poor exploring and very fast convergence
of algorithms increase the chance of getting trapped in local minima.
Furthermore, very slow converging and increasing function evaluations
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Fig. 1. Generating new points using FI method.

is not economical. The balance between exploration and exploitation
is crucial to improve the efficiency of optimization algorithms (Li et
al., 2015). Over the past decade, meta-heuristic algorithms such as
GA (Price et al., 2005; Yang et al., 2007; Chelouah and Siarry, 2000)
ACO, PSO (Jiang et al., 2007) and the artificial bee colony (ABC) have
shown considerable successes in optimization algorithms (Ghanbari
and Rhati, 2017). Previous researches show that ABC and GA have
better exploration and slower convergence. However, ACO and PSO
converge faster with more possibility of getting trapped in local optima
(Alshamlan et al., 2015; Premalatha and Natarajan, 2009; Fidanova
et al., 2014; Meng and Pan, 2016). A nonlinear optimization problem
can be formulated as a D-dimensional problem of the following type:
(Gergel, 1997; Nguyen et al., 2014).

𝑓 (𝑥) =
{

min 𝑓 (𝑥)
𝑠.𝑡. 1 ≤ 𝑥 ≤ 𝑢

(1)

The objective function is defined by 𝑓 (𝑥) and the 𝐷 dimensional
vector of variables is 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝐷); lower and upper limits of
variables are defined by 𝑙 = (𝑙1, 𝑙2,… , 𝑙𝐷) and 𝑢 = (𝑢1, 𝑢2,… , 𝑢𝐷).

2. Fibonacci indicator in the stock market

2.1. Fibonacci ratios

Leonardo Fibonacci is an Italian mathematician who found a
sequence in 12–13th century. In this sequence, each number is
generated by summing two previous numbers as follows: {0, 1, 1, 2,
3, 5, 8, 13, 21, 34, 55, 89, 144,…}. In this sequence, each number is approx-
imately 61.8% greater than the preceding number. By dividing one
number in the sequence by the two and three places to the right, 38.2%
and 23.6% will be found, respectively. Eqs. (2)–(7) are used to generate
Fibonacci ratios.

𝐹 (1)∕𝐹 (2) = 0 (2)

𝐹 (2)∕𝐹 (3) = 100% (3)

𝐹 (3)∕𝐹 (4) = 50% (4)

lim
𝑛→∞

(𝐹 (𝑁)∕𝐹 (𝑁 + 1)) = 61.8% (5)

lim
𝑛→∞

(𝐹 (𝑁)∕𝐹 (𝑁 + 2)) = 38.2% (6)

lim
𝑛→∞

(𝐹 (𝑁)∕𝐹 (𝑁 + 3)) = 23.6% (7)

2.2. Fibonacci retracement and Fibonacci time zone

Fibonacci retracement and Fibonacci time zone are two well-known
indicators used in finance technical analysis to predict possible maxi-
mum and minimum price of each stock and suggests suitable time to buy
or sell in the future. Fibonacci retracement predicts the possible local
minimum and maximum price of each stock by taking the minimum
and maximum points on a chart and dividing the vertical distances
proportional to Fibonacci ratios. For example assume 𝑚 and 𝑀 are
minimum and maximum price of a specific stock, respectively.

Fibonacci percentages = [0, 23.6%, 38.2%, 50%, 61.8%, 100%] (8)

Possible local minimum or maximum price (𝑖) = 𝑚 + (𝑀 − 𝑚)

× Fibonacci percentages (𝑖), 𝑖 = 1, 2,… , 6 (9)

Fibonacci time zone in summary predicts the periods in which the price
of a specific stock will get a significant amount of movement by choosing
the starting point and dividing the horizontal axis corresponding to
Fibonacci series.

3. Fibonacci indicator algorithm

Here, we present a novel evolutionary optimization algorithm using
a combination of two popular tools of technical traders in the stock
marketing, Fibonacci retracement and Fibonacci time zone. Assume
Fibonacci ratios are on arbitrary axis as shown in Fig. 1, so adding 50%
to Fibonacci ratios arranges points more symmetrically around 100%. In
this article, the act of generating new points proportional to Fibonacci
series + 50% between the arbitrary point (𝑥) and the independent
variable of the best gained solution is named FI method. Fig. 1, shows
FI method between 𝑥 and 𝑥 best.

Fibonacci percentages + 50% = [50, 73.6, 88.2% 100% 111.8% 150%]

(10)

Assume the independent variable is time and the fitness of benchmark
function is its price. In the real world, price chart of each stock is
available and traders use Fibonacci indicators to determine the proper
time to speculate in the stock markets by predicting local minimum and
maximum prices.

In FIA the algorithm tries to find the minimum fitness of problem
in variable intervals without using chart. The population size is the
number of points that algorithm uses to start searching. Evaluating the
benchmark cost functions in chosen points determines their fitness; all
points save and sort based on fitness value. The best point sets as ‘‘xbest’’
and its fitness sets as ‘‘gbest’’. However, in each step the data of ‘‘xbest’’
and ‘‘gbest’’ are shared among all traders.

3.1. Searching phase

Searching phase is the main part of Fibonacci indicator algorithm.
In this phase algorithm generates new points between the first chosen
points from the best to the worst fitness, respectively and the shared
xbest. As soon as a better fitness is met, the worst point should replace
with xbest. This procedure continues until all the first chosen points
are renewed after replacing all of them with new founded points it is
suggested to do not omit any xbest in iterations. After making decision
about adding or replacing newly founded points, algorithm cares on
objective function. In single variable problems new points are generated
from the worst point (worst xbest in previous iterations) to the newest
xbest but in multivariable problems this procedure should just carry out
for the specific percent of iterations (𝑝%). Also, in (100−𝑝)% of iterations,
one point (assume ‘‘𝑥’’) should generate by crossing over between xbest
of previous iterations; it means each variable gains from xbest of one of
the previous iterations randomly.

For example for a 3 dimensional function if 𝑚 xbest saved, 𝑥
generates by crossing over as you see below.

xbest = xbest𝑚 = (xbest1𝑚, xbest2𝑚, xbest3𝑚) (11)

𝑥 = (xbest1𝑖, xbest2𝑗 , xbest3𝑘) and 𝑖, 𝑗, 𝑘 are integer numbers randomly
chosen from 1 to 𝑚.

New points are generated between ‘‘𝑥’’ and xbest by FI method.
Crossing over and using xbest of previous iterations from the worst to the
best fitness helps the algorithm to do not trap in local optimums. In both
case of single variable problems and multi variable problems, as soon as
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