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A B S T R A C T

Maximizing the accuracy of the estimated risk, and minimizing the number of calls to the expensive-to-evaluate
deterministic model are two major challenges engineers face. Monte Carlo method is the usual method of choice
for risk estimation. Since each deterministic run for a complex engineering system may require a significant
amount of time, Monte Carlo method may be very time-consuming and impractical. To reduce the computational
expense of Monte Carlo method, surrogate models are presented.

In this paper, an adaptive sequential strategy based on the Monte Carlo method and Gaussian process
regression active learning for risk estimation of engineering systems with minimum computational cost and
acceptable accuracy is presented.

The proposed adaptive sequential strategy to build designs of experiments is illustrated using a simple One-
dimensional explanatory example. Then, the efficiency and accuracy of the presented method are compared with
the other available methodologies using several benchmark examples from literature. Finally, the applicability
of the presented method for nonlinear and high-dimensional real-world problems are studied.

1. Introduction

Quantitative evaluation of risk associated with an engineering sys-
tem is an important part of the risk assessment of that system. Risk
estimation can help engineers to understand the magnitude of the
risk to make wise decisions for separating the acceptable risk from
unacceptable one. The acceptable risk refers to the level of risk that can
be tolerated by the final user due to the constraints such as the extra
cost.

Since uncertainty is part of the engineering design, risk of failure
cannot be completely mitigated. The major sources of uncertainty in
engineering design are noise, error, and bias in the sample data or error
in model or approximation techniques used to solve a model. Due to the
ubiquitous nature of uncertainty, estimating the safety of the system
in abnormal operating condition or failure environment is part of the
realistic modeling of a system (Oberkampf et al., 2002). In practice, such
realistic modeling of a system requires the use of complex and time-
consuming mathematical models. Therefore, efficient risk estimation
models need to be used for estimating the probability of failure of a
system. The wide application of such methodologies in the variety of
asset-intensive industries such as Manufacturing, Oil and Gas, Utilities,
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Chemical, and Life Sciences, motivates the authors to propose their risk
estimation model.

Direct Monte Carlo method (Rubinstein, 2008) is the most robust
risk estimation model since it is not dependent on the dimension and
complexity of the model. However, it is computationally expensive for
systems with low probability of failure. At the expense of robustness,
the efficiency of the direct Monte Carlo method can be increased using
variance reduction techniques (Au, 2016). In order to increase the
efficiency of the Monte Carlo method, many advanced Monte Carlo
methods have been proposed such as Subset Simulation (Papaioannou
et al., 2015), Directional Simulation (Nie and Ellingwood, 2000; Gray
and Melchers, 2006), Spherical Subset Simulation (Katafygiotis and
Cheung, 2007), the Line Sampling method (de Angelis et al., 2015) and
Asymptotic Sampling (Bucher, 2009). Recently, an alternative approach
based on the Gaussian process model (Echard et al., 2013; Picheny et
al., 2010) is proposed. The focus of the presented study takes the latter
approach. However, the proposed method in this paper has significant
differences with other Gaussian process-based models in the literature.
For example, Echard et al. used the First Order Reliability Method
(FORM) and a variance reduction technique known as importance
sampling to find the most probable failure point. Then, they used the
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Fig. 1. Proposed Monte Carlo based Gaussian Process Regression Active Learning algorithm.

Gaussian process to predict the outcome of the expensive to evaluate
system. The performance function in FORM is approximated by the first
order Taylor expansion. This assumption can be a source of error for the
nonlinear systems. On the other hand, Picheny et al. used a Gaussian
process regression method known as the universal kriging model. It
is known that the underlying variogram for such method cannot be
calculated even with known drift function for irregularly gridded data
(Wackernagel, 2013, P. 305). The proposed method in this paper uses
an active learning strategy coupled with a covariance-based Gaussian
process model to find the failure region capable of handling nonlinear
performance functions in a multidimensional feature space.

Recently, several studies on coupling Gaussian process models with
sampling-based methods have been conducted as well. For instance,
Huang, Allen, Notz, and Miller combined Gaussian process regression
based surrogate model and multiple fidelity data to increase the effi-
ciency of the optimization problem (Huang et al., 2006). In order to
estimate the small failure probability, one commonly used method is to
couple the Polynomial Response Surface Method (PRSM) to the FORM
(Gaxiola-Camacho et al., 2017a, b), or Bayesian framework to FORM
(Gaspar et al., 2014; Cadini and Gioletta, 2016; Azizsoltani and Haldar,
2017). Such methodologies provide biased estimates of the probability
of failure since it relies on FORM estimation of the most probable failure
point. Another commonly used alternative to FORM for estimating the
probability of failure of the complex systems is Kriging meta-modeling
technique (Drignei, 2017). For example, using a learning function based
on the probability of the metamodel classification satisfy a constraint,
Echard, Gayton, and Lemaire proposed a reliability method combining
Gaussian process regression and Monte Carlo method (Echard et al.,
2011). Bect et al. proposed a Bayesian decision theory framework in
order to derive an optimal sequential strategy for the estimation of
the probability of failure (Bect et al., 2012), and Dubourg, Sudret,
and Deheeger proposed to couple importance sampling and a Gaussian
process regression based surrogate model to approximate a quasi-
optimal importance sampling density (Dubourg et al., 2013; Dubourg
and Sudret, 2014). Coupling Monte Carlo simulation with active learn-
ing algorithms such as neural networks (Sener and Savarese, 2017) and
support vector machine (Tong and Koller, 2001) can be used to estimate
the probability of failure of the engineering systems efficiently and
accurately. However, neural networks active learning suffers from lack
of interpretability, and support vector machine active learning tends
to yield better results for binary classification problems rather than
the regression problems. Besides, although these methods are proven
to give good estimation of the expected value of the hypothesis, none
of them can directly provide the variance of the prediction explicitly.
The interpretability and estimating the variance of the model are two
key factors for selecting the proper model for risk estimation. Gaussian
process regression is a highly interpretable machine learning algorithm

that can provide both expected value and the variance of the model.
These observations motivate the authors to propose the Gaussian process
regression active learning for risk estimation of engineering systems.

2. Background information

In measure theory, sample space Ω is a finite or infinite set of all
possible outcomes of an experiment, and any subset of the sample space
is an event. A 𝜎-algebra F on a set Ω is a collection of subsets of Ω if it is
closed under complementation, and it is closed under taking countable
unions. The pair (Ω,F) is called a measurable space.

A measure on (Ω,F) is a map P ∶ F → [0,+∞] such that P is
countably additive for every disjoint event. If P (Ω) = 1, then P is called a
probability measure, and the triple (Ω,F,P) is called a probability space.

A random variable 𝑋 ∶ Ω → R is a measurable function from the
sample space Ω to another measurable space if for every Borel set 𝐴 ⊆ R,

𝑋−1 (𝐴) = {𝜔 ∈ Ω ∶ 𝑋 (𝜔) ∈ 𝐴} = {𝑋 ∈ 𝐴} (1)

is measurable.
The probability 𝑃 (𝐴) of A can be defined by taking the preimage for

every Borel set 𝐴 ⊆ R

𝑃 (𝐴) ∶= P (𝑋 ∈ 𝐴) = P
(

𝑋−1 (𝐴)
)

(2)

where 𝑃 is a probability measure on R which is called the distribution
of 𝑋. In this paper, the probability 𝑃 (𝐴) of A is considered as the
probability of failure of the system, and 𝑋 is considered as the output
of an expensive-to-evaluate deterministic function. In fact, the above
discussion is true for all metric spaces, i.e. for R𝑑 . In this case, function
𝑋 is called a random vector.

Let 𝑋1, 𝑋2,… , 𝑋𝑛 be independent random variables with the com-
mon mean 𝜇, and consider 𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛. According to the
Weak Law of Large Numbers

P
(

|

|

|

|

𝑆𝑛
𝑛

− 𝜇
|

|

|

|

> 𝜀
)

→ 0 as 𝑛 → +∞ (3)

for every 𝜀 > 0. In fact, one of the most important applications of the
Weak Law of Large Numbers is the Monte Carlo method. Consider the
estimator

𝐼𝑛 ∶=
1
𝑛

𝑛
∑

𝑖=1
1{𝑋𝑖∈𝐴} (4)

where 𝑋𝑖s are independent random variables with the probability
measure P, and 1{𝑋𝑖∈𝐴} is a score function (1{𝑋𝑖∈𝐴} = 1 if 𝑋𝑖 ∈ 𝐴
and 1{𝑋𝑖∈𝐴} = 0 otherwise) (Rubinstein, 1986). Based on the Weak Law
of Large Numbers, the estimator 𝐼𝑛 converges to 𝑃 (𝐴) in probability as
𝑛 → +∞.
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