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A B S T R A C T

An adaptive online sequential extreme learning machine (AOS-ELM) is proposed to predict the frequency-
dependent sound pressure level (SPL) data of various compartments onboard of the offshore platform. With
limited samples and sequential data for training during the initial design stage, conventional neural network
training gives significant errors and long computing time when it maps the available inputs to sound pressure
level for the entire offshore platform. By using AOS-ELM, it allows a gradual increase in the dataset that is hard to
obtain during the initial design stage of the offshore platform. The SPL prediction using AOS-ELM has improved
with smaller root mean squared error in testing and shorter training time as compared with other types of ELM
based learnings and other gradient based methods in neural network training.

1. Introduction

Noise control is required to ensure crew habitability onboard an
offshore platform. Applying noise prediction is important to identify
the potential noise problem at the early stage of the offshore platform
design to avoid costly retrofitting in the implementation stage. The
noise in the offshore and marine applications is currently identified
using the empirical formula or the computer-aided design (CAD)-based
commercial software. The boundary element method (BEM) and Finite
element analysis (FEA) analyze the acoustics by considering wave
propagation. On the other hand, the statistical energy analysis (SEA)
and the energy finite element analysis (EFEA) determine the sound field
based on energy flow between subsystems. However, the accuracy of
the results could not be guaranteed (Nilsson, 1978) using the empirical
formulas on different applications as most could not meet the required
shape of the room and sound source as stated in their assumptions.
In addition, the CAD-based numerical tool is considered to be quite
accurate at certain frequency regime. Unfortunately, using these tools
for modeling a large-scale system such as the offshore platform can be
quite a time and resource intensive.

For the past few decades, neural networks based learnings have been
used to model complex systems with uncertainties. The types of machine
learning approaches used in the literature are numerous. In this study,
the extreme learning machine (ELM) (Huang et al., 2012) will be used
to model the sound pressure level (SPL) on the offshore platform. ELM
has become quite useful and necessary for machine learning with its
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good generalization, fast training time, and universal approximation
capability. As compared to other machine learning algorithms such as
backpropagation (BP) (Rumelhart et al., 1986), it is well-known that
the parameters of hidden layers of the ELM are randomly generated
without tuning. The hidden nodes could be determined from the training
samples. Huang and his team (Huang et al., 2012, 2006a, 2008;
Huang, 2014) have shown that the single layer feedforward networks
(SLFNs) (Ding et al., 2015; Huang, 2015; Huang and Babri, 1998; Xu et
al., 2017; Yang et al., 2017; Xu et al., 2016; Jia et al., 2016; Oneto et al.,
2016; Rafiei et al., 2017; Liang et al., 2006; Tang et al., 2016) ensure its
universal approximation capability without changing the hidden layer
parameters. ELM using regularized least squares could compute faster
than the quadratic programming approach in gradient method adopted
by BP. There is no issue of local minimal and instabilities caused by
different learning rate, and differentiable activation function.

There are numerous types of ELM learning algorithms. The list in this
paper is not exhaustive. A few selected algorithms will be used as shown
below. Basic incremental ELM (I-ELM) (Huang et al., 2006a; Huang
and Chen, 2007) randomly produces the hidden nodes and analytically
computes the output weights of SLFNs. I-ELM does not recompute the
output weights of all the existing nodes when a new node is appended.
The output weights of the existing nodes are then recalculated based on
a convex optimization method when a new hidden node is randomly
added one at each time. The learning time for I-ELM is longer than ELM
as it needs to compute n output weights one at a time when n hidden
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nodes are used. However, ELM only computes n output weights once
when n hidden nodes are used. Few methods using different growth
mechanism of hidden nodes were adopted. They are namely enhanced
incremental ELM (EI-ELM) (Huang and Chen, 2008), error-minimized
ELM (EM-ELM) (Feng et al., 2009) and optimal pruned ELM (OP-
ELM) (Miche et al., 2010) that produce a more compact network and
faster convergence speed than the basic I-ELM. Another incremental
ELM named Bidirectional ELM (B-ELM) (Yang et al., 2012) with some
hidden nodes not randomly selected could improve the error at initial
learning stage at the expense of higher training time when compared to
ELM. Another ELM learning using hierarchical ELM (H-ELM) (Tang et
al., 2016) improves the learning performance of the original ELM due
to its excellent training efficiency, but it increases the training time due
to deep feature learning.

On the other hand, the sequential learning algorithms are quite
useful for feedforward networks with RBF nodes (Liang et al., 2006;
Platt, 1991; Kadirkamanathan and Niranjan, 1993; Yingwei et al., 1997;
Wen et al., 2017; Huang et al., 2004, 2005). Some researchers (Huang
et al., 2004, 2005) have simplified the sequential learning algorithms
to enhance the training time, but it remains quite slow since data are
handled one at a time instead of in batches. The online sequential
extreme learning machine (OS-ELM) that can handle additive nodes
(and RBF) in a unified framework from the batch learning ELM (Huang
et al., 2006a, 2004; Zhang et al., 2018; Huang et al., 2006b, c; Li
and Yang, 2017; Budiman et al., 2016) is implemented in SLFNs. As
compared to other sequential learning algorithms using different tuning
parameters, OS-ELM requires the number of hidden nodes for tuning the
networks solely. The newly arrived block or single observation (instead
of the entire past data) are learned and removed once the learning
process is accomplished. The input weights (connections between the
input nodes to hidden nodes) and biases are randomly produced, and
the output weights are analytically computed.

Many applications including the noise related applications (Xu et
al., 2004; Liu et al., 2014; Nannariello and Fricke, 2001; Aliabadi et al.,
2013; Nannariello et al., 2001) have used the neural network in the field
of room acoustics modeling. In the current literature, AOS-ELM appli-
cation to model the sound pressure level in different rooms on board of
the offshore platform such as a jack-up rig has not been discussed. The
use of steels for room construction in the jack-up rig differs from most
of the land-based industrial and acoustic rooms (Hodgson, 2003; Ji and
Chin, 2015) as the steel structures increase the percentage of structure-
borne noise from 125 Hz to 8000 Hz. There exists no single model
that considers the frequency variation, room’s geometry, source’s power,
source(s) position and receiver(s) location in the acoustics model. The
application of AOS-ELM is also advantageous due to its ability to
converge quickly and sequentially with good generalization. It is useful
for SPL modeling during the initial design stage where the data is
progressively available in batches with small sample size from different
technical teams and vendors in the company. Moreover, the availability
of data for the design variables is often delayed by a lack of exact
information during the early design stage that makes the sequential ELM
based learning which is crafted to handle newly arrived block or single
observation whenever the data are available.

This paper has the following sections. Section 2 describes the input
and output variables selection for training. Section 3, review on ELM and
adaptive sequential ELM learnings on the frequency dependent noise
dataset from the oil rig. Section 4 performs the evaluation of some
commonly used neural networks and comparisons to the selected ELM-
based learning. Section 5 concludes the paper.

2. Input and output variables selection

The neural networks determine the relationship between the thirteen
input variables to the four output targets namely: spatial sound pressure
level (SPL), spatial average SPL, structure-borne noise and airborne
noise at different octave frequencies (e.g. 125 Hz to 8000 Hz). The

spatial SPL consists of both direct and diffuse field (or reverberant
field) obtained from a commercial SEA modeling software called VA-
One™ and MATLAB™, respectively. The spatial SPL is achieved from the
logarithmic sum of both the direct field (𝐿𝑝,𝑑𝑖𝑟) and reverberant (𝐿𝑝,𝑟𝑒𝑣)
component as shown.

𝐿𝑝,𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 10 log(100.1𝐿𝑝,𝑑𝑖𝑟 + 100.1𝐿𝑝,𝑟𝑒𝑣 ) (1)

The VA-One™ software is also capable of computing both the air-
borne and structure-borne noise from (Ji and Chin, 2015; Azma et al.,
2013) but at the expense of high computational time and resources.
The input variable for AOS-ELM training are selected based on two
broad principles: (a) variables that describe the acoustics and structure
features of the offshore platform, and (b) variables that influence the
response of the sound fields. However, the input variables require a
prior understanding of the acoustic problem on the board of the jack-up
rig at a different frequency. Also, the acoustic environment on the jack-
up rig is quite complex due to its large number of noise and vibration
sources located within a compact space. The use of wide variety of
different materials for room construction complicates the acoustics room
modeling.

The airborne noise governs the compartment’s sound field where the
machinery is situated. In general, the SPL measured in the airborne-
dominated compartments can be approximated by the Heerema and
Hodgson empirical formula (Heerema and Hodgson, 1999). The formula
depends on the room geometry, source power level, source–receiver
distance, absorption coefficient, and fitting density of the source room.
Unfortunately, the airborne noise in the source room can penetrate
through the common bulkheads or decks to influence the noise in
the adjacent rooms. The transmitted acoustic energy depends on the
incident acoustic energy and transmission loss which is determined by
the plate material properties and thickness as shown.

𝐿𝑎𝑑𝑗 = 𝐿𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑅 + 10 log 𝑆
𝑆𝛼

(2)

where𝐿𝑎𝑑𝑗 and𝐿𝑠𝑜𝑢𝑟𝑐𝑒 are the SPL of the adjacent room and source room,
respectively. The transmission loss and surface area of the common
bulkhead are 𝑅 and 𝑆, respectively. Here 𝛼 is the mean absorption
coefficient of the adjacent room. In some cases where the SPL within
the source and the adjacent room are not known, the range of SPL is
provided by the regulation namely NORSOK S-002 for eight different
room types based on the permitted noise levels on the board of the
offshore platform as shown below.

∙ Type 1- unmanned machinery room (maximum allowable 110
dBA)

∙ Type 2- unmanned machinery room (maximum allowable 90
dBA)

∙ Type 3- manned machinery room (maximum allowable 85 dBA)
∙ Type 4- unmanned instrument room (maximum allowable 75

dBA)
∙ Type 5- store, workshop and instrument room (maximum allow-

able 70 dBA)
∙ Type 6- living quarter public area, change room, corridor and

toilets (maximum allowable 65 dBA)
∙ Type 7- living quarter public area, laboratory, local control

room, galley, mess room, office, gymnasium, lobby (maximum
allowable 60 dBA)

∙ Type 8- cabin, hospital, central control room (maximum allow-
able 45 dBA)

On the other hand, the structure-borne sound is directly caused
by vibrating machinery induced mechanical force, or indirectly by the
structure excitation due to incident airborne noise. The energy radiated
by structures are proportional to the plate’s radiation efficiency, surface
area, density, sound propagation speed, and the square of plate vibration
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